
AD-A243 788C

,DTIC
EL.ECTE U

OF : DEC 3 11991

1.7

77" -wl Proved
-is unu I d Iwo; us

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

-AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AF1T/GAIENG/9 1D-O 1

A~

DESIGN AND APPLICATION OF AN OBJECT ORIENTED
GRAPHICAL DATABASE MANAGEMENT SYSTEM

FOR SYNTHETIC ENVIRONMENTS

THESIS

John A. Brunderman
Captain

AFfl'/GAIENG/9 iD-Ol

Approved for public release. distribution unlimited

91-19016 ~

JII ORIIEI RW

AFIT/GAIENG/91D-01

DESIGN AND APPLICATION OF AN OBJECT ORIENTED

GRAPHICAL DATABASE MANAGEMENT SYSTEM

FOR SYNTHETIC ENVIRONMENTS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

Accesion For

NTIS CR'.&I J
DT;'- TAO
U..:;'o,, ced -- John A. Brunderman,

Captain
By
D:.t ib ,tio:i-

A' December, 1991
Dist

A-
Approved for public release; distribution unlimited

Acknowledgments

I would like to thank all those who have given me support during this thesis effort. First I

want to thank Lt. Colonel Phil Amburn, my thesis advisor, who took on the extra responsibility of

a cross-departmental student. His enthusiasm, guidance and sense of humor kept me on track and

made the whole experience a reasonably pleasant one. I wish to also thank the other thesis students

in the graphics lab. Their critiques and comments helped in the design and implementation of

my software system. I have a special thanks to give to the Rorabacher's and the Parrott's, whose

prayers and encouragement lifted me up during some difficult times.

My deepest 'thank you' goes out to my family. To my two sons, Eric and Adam, who

understood when I did not have time to wrestle. And most of all to my wife, Cynthia, who kept

the faith and persevered during this past year and a half. She was my confidant, my counsellor,

my proof reader, my best friend, and so much more. I dedicate this thesis to you with love.

John A. Brunderman

Table of Contents

Page

Acknowledgments........

Table of Contents.......

List of Figures vii

List of Tables. x

Abstract. x

1. Introduction.

1. 1 Overview. 1

1.2 Problem Statement. 2

1.3 Research Objectives 3

1.4 Requirements 4

1.4.1 Visualization. 5

1.4.2 Manipulation 6

1.4.3 Interactive Movement. 6

1.5 Constraints 7

1.6 Thesis Overview 8

11. Background. 9

2.1 Overview. 9

2.2 Graphical Standards 9

2.3 Computei Image Generators...

2.4 Graphical Workstations..... 1

2.5 Application of Graphic Workstations in the Military 1

iii

Page

2.5.1 Route Evaluation Module (REM) 12

2.5.2 3-D Stereoscopic Display System (Scenario). 12

2.5.3 Battle Management Visualization System. 12

2.6 Drawing Interfaces. 12

2.7 Summary 14

II. Graphical Database Management System (GDMS) Design 15

3.1 Overview 15

3.2 General Requirements and Constraints 15

3.2.1 Geometry Format 17

3.2.2 Language Selection 17

3.2.3 Prior Software Impact 18

3.2.4 Development Timing. 18

3.3 Detailed Design Requirements and Decisions. 18

3.3.1 Geometric Descriptions. 20

3.3.2 Templates. 21

3.3.3 Multiple Resolution Object Abstraction 22

3.3.4 Hierarchical Construction 24

3.3.5 Object Placement. 24

3.3.6 Object Management 25

3.3.7 Viewing 26

3.3.8 Summary. 27

3.4 ImplementationClass Construction 27

3.4.1 GeomClass Class 28

3.4.2 Template Class. 30

3.4.3 Translator Class 31

3.4.4 GenListNode Class 32

3.4.5 PhigsNode/PhigsList Classes. 34

iv

Page

3.4.6 Placement Class 36

3.4.7 TGrid Class 39

3.4.8 View3D Class 41

3.4.9 World-Window Class 42

3.5 Summary 43

IV. The Database Generation System (DBGen) 46

4.1 Overview 46

4.2 General Requirements 48

4.2.1 File Management 48

4.2.2 Object Editing 48

4.2.3 Environment Control 50

4.2.4 User Interface 53

4.3 Design and Implementation 55

4.3. 1 Object Selection 55

4.3.2 Object Manipulation 56

4.3.3 Object Type Identification 56

4.3.4 Object Insertion 57

4.3.5 Mouse Interface 59

4.4 Class/Driver Construction 60

4.4.1 ButtonNode/ButtonWindow Class 60

4.4.2 Driver 62

4.5 Summary 62

V. Results, Conclusions and Recommendations 65

5.1 GDMS 65

5.1.1 Results 65

5.1.2 Strengths 69

v

Page

5.1.3 Weaknesses and Recommendations. 70

5.2 DBGen. 73

5.2.1 Results. 73

5.2.2 Strengths. 73

5.2.3 Weaknesses and Recommendations. 74

Appendix A. File Formats. 77

A. 1 TEMPLATE File. 77

A.2 LINK File. 80

A.3 PLACEMENT File. 83

Appendix B. DBGen USER's MANUAL. 89

B. 1 Command Line Interface. 89

B.2 Window Layout. 89

B.2.1 Button Window. 89

B.2.2 Status Window....

B.2.3 Viewing/Manipulation Windows. 96

B.3 Mouse Interface. 98

B.3. 1 Right Mouse Button. 99

B.3.2 Left Mouse Button 99

Appendix C. Unix Manual Page. 102

Bibliography. 105

Vita. 107

vi

List of Figures

Figure Page

1. Relation between various thesis efforts 4

2. Screen layout for DrawPerfect presentation program 13

3. Synthetic Environments Laboratory Efforts 16

4. Pictorial representation of a HAND Template object 21

5. Object abstraction in GDMS 23

6. Data and Class alignments in GDMS 28

7. Generalized list structure within the PhigsList Class 33

8. Example of method calls for the constructing F-16 35

9. Possible PhigsList conitruction of Placement objects 36

10. Class diagram for GDMS 44

11. Classes used within DBGen 46

12. Overview of data flow between SEL applications 47

13. Terrain viewed at MORNING setting in DBGen 50

14. Terrain viewed at AFTERNOON setting in DBGen 51

15. Window Layouts with corresponding views in DBGen 52

16. Picture of Placement window format in DBGen 53

17. Picture of Fly-Through window format in DBGen 54

18. Picture of objects selected in the database 56

19. Picture of objects activated for modification in the database 57

20. Cascading menu structure accessed through the Button Panel 58

21. Pictures of Button Window and Status Window panels in DBGen 59

22. Class interaction in the construction of DBGen 61

23. Psuedo-Code of DBGen driver. 63

24. Picture of HAND object constructed hierarchically with GDMS 70

25. Coarse clipping algorithm comparisons 71

vii

Figure Page

26. Synthetic environment created with DBGen (Grand Canyon area) 73

27. Synthetic environment created with DBGen (Death Valley area) 74

28 Synthetic environment created with DBGen (Denver Area area) 75

29. Excerpt from "hand.desc", a TEMPLATE file 78

30. Example of simple LINK file 81

31. Excerpt from PLACEMENT file (terrain.dbs) 85

32. Excerpt from PLACEMENT file (test.dbs) 85

33. Button window with cascading menu relationships 90

34. Window formats in DBGen 97

viii

List of Tables

Table Page

1. Requirements and constructs within GDMS 19

2. Frame rate response of GDMS with various options set 66

3. Frame rate response of GDMS varying Grid dimensions 68

4. Frame rate response of GDMS varying Field-Of-View 68

5. Frame rate response of GDMS varying Grid dimensions 69

6. TEMPLATE file format 78

7. LINK file format 81

8. PLACEMENT file format 84

9. Left mouse effects in Overhead window 99

10. Left mouse effects in Side 1 window 100

11. Left mouse effects in Side 2 window 101

ix

AFIT/GA/ENG/91D-@ 1

Abstract

2 The Air Force Institute of Technology (AFIT) is investigating the use of synthetic environ-

ments for military appl -ations under the sponsorship of Rome Laboratories (RL). Areas under

investigation include mission planning, battle management and flight simulation.

The work reported in this thesis focuses on the object-oriented design and implementation

of the Graphical Database Management Sy tern (GDMS) used to support research in these areas.

GDMS provides the data structures, file formats and algorithms to manage and render hierarchical,

three-dimensional, polygonal models. Flexibility and idaptability were key factors in its design.

A secondary objective of this research was to demonstrate the functionality of GDMS

through the development of a characteristic application. This led to the design and implementation

of a DataBase Generation System (DBGen) for the construction and manipulation of synthetic

environments. DBGen allows a user to orient, scale, move, delete and add multi-resolution objects

to synthetic environments interactively. It also provides a real time fly-through capability for

immediate feedback on the dynamic response of the database.

The development of the Graphical Database Management System was successful. The

design and implementation of four major synthetic environment applications based on GDMS

tested i's flexibility, while the rapid incorporation of a number of special effects algorithms in the

final stages of the development cycle demonstrated its adaptability.

The development of the Database Generation System was also successful. In addition to

providing an excellent platform for testing GDMS funtionality, it proved to be an effective tool for

placing 3-D objects on terrain.

x

DESIGN AND APPLICATION OF AN OBJECT ORIENTED

GRAPHICAL DATABASE MANAGEMENT SYSTEM

FOR SYNTHETIC ENVIRONMENTS

L Introduction

1.1 Overview

In military operations, the quality of the planning has a considerable effect on the success

of the mission. From target selection to mission debrief, an extraordinary amount of training,

planning, and coordination takes place to give a pilot the highest possible chance of success.

Success is defined not only as hitting the target, but as returning the pilot and aircraft to fly again.

We can not, generally, afford to trade a weapon system and crew for each target we need to take

out. As our systems and crews get more specialized and expensive, this factor becomes even more

critical.

The vast majority of real world tactical planning is done manually with paper, pencil, slide

rules and various charts, maps and photographs of the battle area (20:5). The battle field terrain

is the central focus. The terrain drives ingress and egress routes, radar masking options, altitude

profiles, fuel requirements and numerous other considerations. The shear volume of required

information makes manual mission planning time consuming and potentially faulty.

Computer assisted planning aids, like TAC's Computer Assisted Force Management System

(CAFMS), were developed to store, retrieve and process information for the planner (4). These

early computerized planning aids presented information in statistical textual formats, wherein the

user had to visualize the battle arena. Unfortunately, the human mind is limited as to the amount

of abstract data it can track at once (3). To manage and present more information to the user,

researchers have investigated the use uf 3-Dimensional graphical representations. These 3-D,

graphically generated depictions of the 'real' world are called "synthetic environments". Terrain-

based synthetic environments include, but are not limited to, the following components: 1) the

basic surface terrain in the area of interest, 2) features like rivers, forests, fields and roads, 3) objects

like cars, traing, and buildings, and 4) indistinct items like fog, visibility and radar envelopes.

Synthetic environments are not new to the military. They have been used in high fidelity

flight simulators for some time. What is new is that the cost of the hardware needed to generate

and manipulate a synthetic environment has dropped dramatically.

With the advent of general purpose graphic workstations, like the Silicon Graphics Iris 4D,

synthetic environments are finding their way into a large number of other applications. Recent

years have seen its application to military planning. Current systems using synthetic environments

include:

The Route Evaluation Module (REM) for route selection and planning (2).

SCENARIO, a 3-D stereoscopic mission planning system (16).

And the Battle Management Visualization System, an experimental system for viewing Red

Flag data (21).

For these applications, the objects and the terrain comprising the synthetic environment

are maintained within a graphical database. A graphical database is comprised of geometric de-

scriptions containing vertices, normals, and attributes that approximate how light interacts with

the surface. Several graphical standards have emerged in recent years for dealing with the com-

plexities and management of graphical databases. Of particular interest is International Standards

Organization (ISO) standard graphical package called PHIGS (10). PHIGS (Programmer's Hierar-

chical Interactive Graphics System) provides an extensive set of graphical database manipulations,

while promoting portability between applications (7). PHIGS includes the following features

and capabilities: it uses a 3D, floating-point coordinate system and implements the standard 3D

viewing pipeline (7); it maintains a database of objects which can be manipulated through simple

editing calls; and it operates in an abstract 3-D world coordinate system, not 2-D screen space

(10). These capabilities match well with the requirements for a synthetic environment graphical

system. PHIGS does not address all our concerns, but it provides a good baseline from which to

draw capabilities.

1.2 Problem Statement

The utility of the synthetic environment interface to applications in mission planning and

battle management is an open research issue. The Air Force Institute of Technology (AFIT)

2

is developing its Synthetic Environments Laboratory (SEL), under the sponsorship of Rome

Laboratories (RL), to address these issues.

AFIT developed the specific requirements for this research. To meet them, the SEL needed

a general purpose graphical database management system from which to base synthetic environ-

ment applications. The system had to be adaptable to allow for experimentation and changing

research objectives. Commercial systems were unacceptable on this point due to their proprietary

status. Thus, an in-house program to provide the baseline capability for future investigations was

developed.

Additionally, the capability to generate test environments were also needed. An application

based on the above database management system had to be constructed to generate the files for use

in future application.

1.3 Research Objectives

The main objective of this thesis was to design and implement an object-oriented Graphical

Database Management System (GDMS) used to support SEL research related to mission planning,

battle management and flight simulation. The GDMS must provide the data structures, file formats

and algorithms to manage and render hierarchical, three-dimensional, polygonal models within a

synthetic environment. Flexibility and adaptability were key requirements in the design.

The system must accommodate the graphical database storage and rendering needs of the

other efforts in the SEL. These efforts included the development of an object oriented flight simu-

lator (19), a synthetic environment battle management system (8), a terrain generation system (5),

a geometry viewing program (15), and a synthetic environment generation system (See Chapter

4). The GDMS is the glue holding all these applications together. It acts as the integrator, insuring

compatibility and interaction between them.The second objective of this research was to demon-

strate the functionality of GDMS through the development of an application for the construction

and manipulation of synthetic environments. This led to the design and implementation of the

DataBase Generation System (DBGen). DBGen had to allow a user to orient, scale, move, delete

and add multi-resolution objects to synthetic environments interactively. It also had to provide a

real time fly-through capability for immediate feedback on the dynamic response of the database.

3

DBGen was not intended to be a modeler, just an organizer. Objects descriptions are selected

from a list of predefined geometric models, set up by the user in a special file, and added to the

terrain descriptions provided by Duckett's Terrain Generation system (5). The resulting synthetic

environments are saved to disk for the demonstration, analysis and testing of other SEL application.

Figure I shows the relationship of the data files, GDMS, and the major applications

within the SEL. The Terrain Generation System constructs the terrain files (GEOM, LINK, and

PLACEMENT) for use by GDMS. GDMS is built around reading and manipulating these data

files. Applications then use GDMS to handle their graphical database requirements.

Object DataBase Synthetic
Oriented Generation Environment
Flight System Battle
Simulator (DBGen) Management

System

Figure 1. Relation between various thesis efforts.

1.4 Requirements

Three common requirements surface in applications using synthetic environments. Each

application must 1) visualize the environment, 2) manipulate objects in the environment, and 3)

4

interactively move through the environment. Based on the particular application, these require-

ments might change order of importance. The following paragraphs examine each of these in more

detail.

1.4.1 Visualization The first requirement is to visualize the environment. Environment

visualization is subdivided into three areas, projection, resolution, and realism. Projection deals

with how the environment is mapped to the display device to produce images. Two approaches are

used, perspective and orthographic. The perspective view gives the environment a 3-D quality, thus

displaying it in a manner similar to the way in which the eye is accustomed. Distant objects appear

smaller than near objects. This provides motion cues to the viewer, thus helping our cognitive

understanding of speed and distance in a moving scene (7). An orthographic view provides direct

correlation between screen space and world space. It is used for measurement and positioning

purposes. DBGen uses an orthographic view in an overhead look at the terrain for object placement

purposes.

Resolution is a measure of the detail in a scene. The required level of detail is based on the

task at hand. Mission planning requires a high level of detail, so a planner can account for as many

factors as possible. Battle management, however, might get by with less, since it is primarily an

overview system and tends to use symbolic representations of objects in the environment (12).

Another factor in the resolution required is the distance from eyepoint to terrain. Close objects

require higher detail than objects far away. The graphical database management system should be

able to handle the diverse resolution requirements for our intended applications.

Realism deals with the type of information presented to the user. It can be divided into two

categories, classification and density (20). Classification deals with the ability of the system to

render the synthetic environment so a user can recognize land use and generic features, such as

forests, fields, towns, etc. In our intended applications, this allows a user to rapidly identify terrain

types and potential routes. Object density is a measure of the number of surface objects placed

over a given area of terrain. Higher object densities help with spacial perception, like altitude

control in flight simulators (11).

The proficiency of a graphical database management system in providing classification cues

and high object densities is a function of the hardware available and the data structures used. The

5

push is always on to increase the realism of the scenes. For our system, a means to try out various

rendering algorithms was required.

1.4.2 Manipulation The second requirement is to create and manipulate objects in a

graphical database. Whether inventing a synthetic environment, or trying to match a specific battle

area, every object needed, from terrain to truck, has to be modeled and inserted into the database.

The management of these objects (storing, creating, editing, rendering) is the major design criterion

of the Graphical Database Management System.

This requisite drives the following requirements. The system must be able to build up

complex objects in PHIGS-like hierarchies from geometric primitives. The primitives in this case

will not be individual polygons, but previously created models on disk. To manage the polygonal

count rendered for each frame, the system must be able to incorporate multiple levels of resolution

for each object. To provide flexibility in object construction, a hierarchical structure is needed.

An additional structure is required to break down the synthetic environment into smaller blocks

for efficient access and rendering in the database. A mechanism for viewing the database from

different angles with different perspectives is also needed. Finally, the ability to store and retrieve

all this information from disk is required for portability between applications.

1.4.3 Interactive Movement The final requirement for a graphical database management

system involves moving through the environment, viewing it from different angles. The perfor-

mance of the system effects the smoothness and flow of the images, which determines its usability

for particular applications.

Graphical performance is often measured by frame rate, i.e., how many image frames per

second the system can produce of the given environment. It is inversely proportional to the

number of geometric primitives processed through the graphical pipeline. The higher the number

of polygons and pixels covered, the more time it takes to draw each frame, and the slower it goes.

For flight simulation, the update rate of a "fly-through" capability is very important (20).

The goal is to display images at a rate comparable to a motion picture. Motion pictures use a

standard rate of 24 frames per second (13). 30 frames per second is targeted for smooth animation

because it falls just above the normal eye's threshold for observing display flicker (13). High

6

end flight simulation systems use even faster frame rates, 60 Hz and above, to reduce eye fatigue

and provide highly accurate animation. 10 Hz is the minimum frame rate for using animation as

interactive feedback (20). Update rates below beyond this level introduce unacceptable lags in the

response of the image to inputs from the user, causing over-correction.

In the mission planning application, flying the route, or observing it from enemy positions

is still important, however the update rate has much less effect. The limiting requirement for

mission planning systems is on level of detail. Route selection, radar ground clutter, line-of-sight

consideration and nay-point identification are all significantly impacted by the resolution of the

terrain. Balancing these two factors is a large part of a mission planning design.

The database management system should be able to meet the performance requirements of

the intended applications. Data structures and algorithms should be designed with speed in mind.

1.5 Constraints

There were several significant constraints effecting the overall system. Each of these

constraints, to varying degrees, effected the speed and efficiency of the design.

The first constraint dealt with money. The capability described above is not unique. It is

available on the commercial market at high levels of fidelity. Unfortunately, it also comes at a

high price. These systems can build up detailed synthetic environments, but they require special

purpose hardware to render. The SEL needed a public domain graphical database management

system that could be modified at necessary to test out new concepts and algorithms.

Given the development of a custom system, the next concern was the format for the basic

geometric description of an object. Over the course of several years, AFIT has developed a series

of tools to help with the modeling process. Tools to generate surfaces of revolution, extrude

shapes, scale, rotate, translate and combine files. This capability works through a special file

format designated the AFIT Standard Geometry File Format (GEOM) (6). The GEOM format is

not the - ost efficient in terms of disk space or speed of translation, being ASCII based, but a whole

library of GEOM file descriptions already exists from which to draw objects. Since replacing these

tools and models would require extensive time and effort, I chose to keep the GEOM format as the

baseline model description language.

7

The third constraint dealt with the hardware platform available and the software language

used for the development. The hardware platform was a Silicon Graphics Iris 4D workstation.

It uses special hardware components in conjunction with its own graphical library to speed up

polygonal throughput. The models used, 85/GT and 310/GTX, are capable systems, yet still

lacking in certain areas, like hardware texture mapping and hardware alpha blending. This limits

some of the display techniques usable in the rendering system.

For software, the choice was between standard C and C++, an object oriented language.

These are the standards for the Graphics Laboratory at AFIT. Although C would probably execute

faster due to the reduced overhead, the advantages in C++, like encapsulation, inheritance and

polymorphism, far outweighed the slight reduction in speed.

The fourth constraint was one of timing. The Graphical Database Management System was

the basic software platform upon which most other SEL applications were being built. The Flight

Simulator needed it for the out-of-cockpit view. The Battle Management system needed it for battle

field display. The Special Effects project needed it as its baseline for rendering enhancements.

ART required each of these efforts to be completed within the 1991 thesis cycle. Therefore, I

structured my research effort to provide a basic capability as quickly as possible, with incremental

enhancements coming later. These and other design considerations are discussed in detail in

Chapter III.

1.6 Thesis Overview

This document is composed of five chapters. The first is the introduction, which contains

the background, problem, research objectives, requirements, and constraints. The second chapter

covers applicable background information, to include commercial system, graphical standards,

and other military applications related to this topic. Chapter III provides a detailed review of the

design and implementation of the Graphical Database Management System. Chapter IV describes

the design and implementation of the Synthetic Environment Database Generation System. This

is an application of GDMS. The final chapter provides performance measurements, strengths and

weaknesses, with recommendations for future work.

8

II. Background

2.1 Overview

This chapter provides the background to put this thesis effort in context to other work in

the field. It involves research into synthetic environments, which require two basic capabilities.

The first is the ability to manage the graphical database making up the synthetic environment.

The second is the ability to construct synthetic environments for use in research applications. The

Synthetic Environments Laboratory (SEL) at AFIT has been set up to coordinate the research based

on these capabilities in the areas of mission planning, battle management, and flight simulation.

Section 2.2 describes graphical standards, from which the core of GDMS capabilities were

patterned. Sections 2.3 and 2.4 give a quick history of the hardware used to produce synthetic

environments, from Computer Image Generators to graphic workstations. Section 2.5 provides an

.overview of several recent military applications in synthetic environments using graphic worksta-

tion. Section 2.6 examines drawing interfaces to extract a common paradigm for use in DBGen.

Section 2.7, the summary, ends the chapter by showing how all this information relates to the task

at hand.

2.2 Graphical Standards

The primary function of GDMS is to manage the graphical information comprising the

synthetic environment. Research into the management of graphical information has produced

standards like PHIGS and PHIGS PLUS. These packages offer significant capability for the

storage, manipulation and rendering of 3-Dimensional graphical objects. Although AFIT did not

have an implementation of a PHIGS package for the target hardware, nor the money to purchase

one, the graphical standards provided a pool of capability from which to draw. The following is a

short description of these packages.

PHIGS descended from the CORE and GKS standards and their functions closely resemble

one another (9). PHIGS is an ISO standard describing a graphical reference model that provides

functions for application modeling and 3-Dimensional interactive computer graphics (10). PHIGS

PLUS is an enhancement of PHIGS to allow for higher quality 3-D picture rendering techniques

(lighting, color and shading) as well as more sophisticated geometries (tesselated surfaces) (10).

9

PHIGS is a hierarchically modeled system. It maintains a mechanism, called a Central

Structure Store (CSS), to hold information about objects. Objects are defined geometrically

in a local modeling coordinate system. Modeling transforms are applied to position and orient

components relative to one another. A local transformation positions an object relative to its parent's

origin and coordinate system. Since these transforms are inherited from parent structures, complex

hierarchical transformations can be created (10). The CSS stores all this geometric information

to facilitate rapid display traversal during screen regeneration. PHIGS uses a 3-D, floating-point

coordinate system and implements a conventional 3-D viewing pipeline (7:Chapter 6). It operates

totally in this abstract 3-D world coordinate system, not in a 2-D screen space. PHIGS does not

address all our concerns, but it provides a good baseline from which to draw capabilities. Any

graphical management system implemented should match much of the capability, if not the format

of these standards.

2.3 Computer Image Generators

Synthetic environment technology has been around for some time. Its first application was

in early flight simulators where it was used to visualize the approach and landing phase. Miniature

models of the runway environment, a Terrain Model Board (TMB) were built up by hand, and

placed near the simulator. A special camera was then slaved to the virtual position of the aircraft

to feed images of the TMB to the pilot. The models were expensive to build and maintain, and

could not easily be modified to provide different environments.

To overcome these drawbacks, the military funded much of the development of the Computer

Image Generator (CIG). Imagery from CIGs first appeared in flight simulators as tools to display

night-only scenes using point light sources for distant objects. A very limited capability existed to

display three-dimensional objects like runways or buildings. The synthetic environments, being

computer generated, allowed the user some choice of the areas over which to fly. The need for a

variety of environments quickly grew, which gave birth to a class of software for generating the

graphical databases for the hardware.

Advances continued in CIG technology to the point where computers today can update

16000 textured, anti-aliased, shaded faces at 60 Hz, and provide weather effects, too (20:9). The

supporting set of database programs also kept pace over the years. These systems generate the

10

CIG database files directly from Digital Terrain Elevation Data (DTED) and cultural feature data,

as well as from human input.

This capability comes at a price, though. Typical top-of-the-line CIGs fall in the multi-

million dollar range (20:9). The support package needed to generate databases adds additional

costs. In addition, these systems are proprietary to the manufacturer, and can not be modified for

research purposes. Alternatives do exist, however.

2.4 Graphical Workstations

Recent advances in computer chip technology has brought synthetic environment applica-

tions down to the level of the graphic workstation. Several student projects originating at the Naval

Postgraduate School have illustrated the utility of graphic workstations for command and control

visualizations (20)(1)(22).

Graphic workstations offer several capabilities useful to our effort (20:17). They provide a

mechanism for fast drawing of polygonal meshes using either Gouraud or flat shading. They have

significant integer and floating point processing capacity. And, they provide network connectivity.

The Silicon Graphics IRIS/4D is the target platform for this thesis effort. It provides the

basic capabilities needed for manipulation of 3-Dimensional geometric models, which are used to

build synthetic environments. A library of graphic support routines is provided to interface to the

machine's graphic engine. It furnishes the basic rendering functions for all the graphic primitives;

polygons, lines, points, etc. It also provides a simple object management routine for storing,

editing and rendering higher level objects. This latter capability is quite limited, however, and was

not used in the development of the GDMS software. Of all the primitives available, the hardware

is optimized for polygonal throughput.

2.5 Application of Graphic Workstations in the Military

Recent years have seen an increase in the application of synthetic environments to military

tasks, particularly those involving military planning. Military planning systems cover a wide range

of topics, from threat analysis, to battle management, to mission planning, to mission rehearsal.

11

Since the graphical database management system should be able to handle the requirements of

these systems, it is beneficial to describe what several of these systems do.

2.5.1 Route Evaluation Module (REM) The primary purpose of REM is to allow Tactical

Air Control Center Combat personnel to rapidly and effectively assess alternatives for unit tasking

during Air Task Order development (2). The system allows users to select bases and targets, and

then performs path optimizations for threat and fuel considerations. Although the system maintains

the terrain information in three dimensions, it only provides a two-dimensional contour map image

to the user. The software was developed in C.

2.5.2 3-D Stereoscopic Display System (Scenario) Scenario was developed to provide a

demonstration of 3-D stereoscopic display techniques in the context of an operational Air Force

task (14). The user's task was to select a set.of waypoints from a friendly airfield to an enemy

target, with minimal exposure to threats, such as enemy radar and contaminated areas. The system

was developed in C.

2.5.3 Battle Management Visualization System The Battle Management Visualization

System (BMVS) was developed at AFT to establish the concept of previewing Air Tasking

Orders (ATO) with a three-dimensional virtual environment (21). It presents users with a minia-

ture battle environment complete with aircraft, threat regions, targets, etc. The software was

developed using C.

2.6 Drawing Interfaces

The Database Generation System is similar to many drawing programs on the commercial

market. Just like these commercial programs, DBGen's purpose is to manipulate graphical primi-

tives on computer screens. To establish a set of guidelines for the design of DBGen, this section

describes the general interface used in these various programs. For illustration, I will concentrate

on DrawPerfect, a package from the WordPerfect Corporation.

DrawPerfect is a presentation graphics package for use on IBM PCs and compatibles. It

is designed for mouse input through a screen interface. Figure 2 shows the screen layout for

DrawPerfect. The icons to the left of the screen provide quick access to features of the program.

12

File Edit Draw Attributes Options Fonts View Help

~LA

:A
mA

EIZ

C:\DR I 1\DATA\FIGURES\MILITARY\SAM.WPG DwI(0

Figure 2. Screen layout for DrawPerfect presentation program

13

Half of these icons select geometric primitives to insert in the drawing, like lines, polygons, boxes,

circles, etc. The other half activate modes, like move, copy, and delete, for manipulating the

objects already inserted in the drawing. The lower part of the screen provides status information

to the user. The majority of the screen is taken up by the drawing area, with scroll bars to provide

a means for moving the eyepoint. The final item to note is the menu bar at the top of the screen.

This provides access to less frequently used commands, like the file management functions for

saving and retrieving the objects created. The DBGen format is similar (See Chapter IV).

2.7 Summary

The information provided in this chapter formed the basic framework for the design and

development of the Graphical Database Management System and the Database Generation System.

The historical sections provide the reader with the backgrounu ,york in this area to put this effort in

.context. The PHIGS graphical standard influenced die general capability and interface of GDMS,

whereas commercial drawing programs motivated the design of the layout and features in DBGen.

The next two chapters describe the details of the design and implementation of GDMS and DBgen.

14

11. Graphical Database Management System (GDMS) Design

3.1 Overview

This chapter discusses the detailed design and implementation issues that were factors in

the development of GDMS. It explains the rationale for the decisions made in the structuring of

the software. The specific requirements for GDMS were developed by the author to address the

graphical management and rendering needs of synthetic environment applications. The goal was

to develop a library of routines to provide this capability. Figure 10 at the end of the chapter

outlines the C++ classes that were constructed for this purpose.

The chapter is organized as follows. The first section describes general requirements and

constraints, which apply across the whole effort. The second section is a detailed requirements

and decisions section to cover each major area of the design. The third section deals with

implementation specific details of the class structures making up the database system. The final

section gives a summary.

Throughout this chapter, the term 'user' refers to an individual with access and knowledge

of the file structures defining the database. This is usually the individual setting up the database

files for the specific GDMS-based application.

3.2 General Requirements and Constraints

Various pressures existed to shape and constrain the design of this system. The Graphical

Database Management System (GDMS) is part of an overall effort in the Synthetic Environments

Laboratory (SEL) to develop a test bed for synthetic environment applications, such as the Object

Oriented Flight Simulator, the synthetic environment Battle Management System and the synthetic

environment Database Generation System. Figure 3 provides a general overview of how GDMS

relates to the other SEL applications. The needs of these applications influenced the design and

implementation of GDMS.

This section covers those requirements and constraints that had an impact on the entire

design process. These include the geometry format, the language selection, the impact of prior

software, and the overall timing requirements for a working system.

15

Object DataBase ynhei
Oriented Generation Environment
Flight System Battle
Simulator (DBGen) Management

System

Figue 3 Sythetc.Evirnmens LbortoryEffrts

.. . 16.

3.2.1 Geometry Format Several geometries are available for modeling objects in three-

space. Procedural models, fractals, grammar-based models, particle systems, spline-based models

and polygonal models have all been used to represent a wide variety of things (7). The most

common of these, and the easiest to implement, is the polygon model. Polygon manipulation

is well understood in graphics community. The hardware platform, Silicon Graphics Iris 4D, is

optimized for polygon throughput. Consequently, to limit the scope of this projects, I designed

GDMS to handle polygon models only.

3.2.2 Language Selection There are five separate individuals involved this thesis cycle in

the SEL effort. Much of our work is tied closely together. We needed a common language that

would allow us to develop our modules separately, and then share the resulting code with relative

ease. Since these modules would be intermixed freely, we needed the language to provide tight

control over its procedures and variables. We- also wanted the ability to extend the functionality

of a module, without necessarily changing its code directly. We decided to use an Object Oriented

Programming (OOP) language.

OOP is a method of programming that seeks to mimic the natural tendency we have to classify

and abstract things (17). OOP languages are characterized by three main properties; encapsulation,

inheritance and polymorphism. Encapsulation is the combining of data with dedicated functionF.

to manipulate it (17). Inheritance is the building of new, derived classes that inherit the data and

functions from one or more previously defined base classes, while possibly redefining or adding

new data and actions (17). Polymorphism is the giving of one name or symbol to an action that

is shared up and down a class hierarchy, with each class in the hierarchy implementing the action

in a way appropriate to itself (17). OOP languages provide the functionality we were looking for.

Captain Simpson's thesis effort, itself, is on the design of a flight simulator using an object oriented

paradigm (19).

We chose C++ as the implementation language because it was a stable, reliable translator.

As a translator, instead of a native compiler, the standard debugging tools for C were also available.

Additionally, only C or C++ were available in the Graphics lab at ART.

All the mechanisms for the graphical database system were designed using object oriented

constructs. The code is encapsulated and can be updated, replaced or extended as needed to

17

increase speed and/or efficiency.

3.2.3 Prior Software Impact The second major influence on the design was the existence

of a specific set of modeling software. Over the years , AFIT has developed a series of tools to help

in the modeling process. These tools manipulate files in a format called the AFIT Geometry File

Format (GEOM) (6). This format contains the geometric description of the object being modeled.

The GEOM files are ASCII based, using keywords to differentiate between entries. This allows

modelers to read and manipulate the data directly. One does pay a price for this convenience,

however. The ASCII files are much bigger than equivalent files using binary formats, and take

more time to read in and parse them.

3.2.4 Development liming The third major influence on the design was the timing con-

straint. As mentioned before, five thesis efforts for the 1991 cycle depended in some way on

the database system. Getting a working version as quickly as possible was critical to these other

efforts. Sufficient time was needed after initial development to integrate the database system

into the other applications, making updates as required. For this reason, many of the algorithms

and constructs in the design are as straightforward as possible. Future work could address more

sophisticated techniques.

3.3 Detailed Design Requirements and Decisions

The graphical database management system is intended to provide all the functionality

needed for the storage, manipulation and rendering of objects in a synthetic environment. I

patterned the system after hierarchically based graphical models like that used in PHIGS. The

software needed the following functionality: 1) to read geometric descriptions from disk into

memory for display on the hardware, 2) to take these geometric descriptions and group them

together to form more complex object descriptions, 3) to merge up to three complex object

descriptions into a single, multi-resolution object, 4) to group any number of multi-resolution

objects into a single complex multi-resolution object, 5) to place multiple instances of these

complex multi-resolution objects on a uniform grid of terrain objects, and 6) to provide a viewing

mechanism for interacting with the grid. Table I relates these requirements to the file and data

structures used to address them.

18

Table 1. Requirements and constructs within GDMS

REQUIREMENTS FILE STRUCTURE CLASS STRUCTURE

Geometric Description GEOM GeomClass

Complex Object Descriptions TEMPLATE Template

Object Abstraction LINK Translator

Multi-Resolution LINK Translator/Placement

Object Placement PLACEMENT Placement/TGrid

Object Management N/A TGrid/PhigsList/
PhigsNode/Genlist

Viewing N/A View3D/WorldWindow

The remaining sections will follow this general break down of functional areas as described

above. Specifically, these sections deal the requirements in the areas of geometric descriptions,

templates, multi-resolution object abstraction, hierarchical construction, object placement, object

management, and viewing. Each section will cover the storage, manipulation, and rendering

requirements, as applicable.

Storage covers both the storage of data on disk and the data structures in memory. The

information stored to disk must be sufficient to recreate the environment desired. The data stored

in memory must be kept at a minimum, while providing rapid access.

Manipulation deals with the ability to specify initial and subsequent positions, orientations,

scales and visible attributes for each object in the database. This applies to both static and dynamic

objects.

Rendering is the display of the objects on target hardware. All hierarchical relationships

must be preserved during this phase.

The following section are ordered in a "bottom up" approach, similar to the development

cycle, starting with the low-level requirements and working up to the high-end ones.

19

3.3.1 Geometric Descriptions The first requirement was for the storage, retrieval, man-

agement and rendering of geometric descriptions. This formed the basis for the design of the C++

data structure class, GeomClass. (See Section 3.4.1). The GeomClass provides the functionality

for reading geometric descriptions from disk and displaying them on the hardware.

The AFT GEOM format was chosen as the storage format for geometric descriptions on

disk. It has support for a variety of geometric constructs, like polygons and bi-cubic surfaces.

However, in scoping my effort, I limited the allowable descriptions to polygonal models only. In

most polygonal models, where a large portion of the polygons are connected, over half of the vertex

and normal information is shared with other polygons. The GEOM disk file format reduces this

duplication by separating the vertex information from the connectivity information. With the large

amount of information contained in a geometric description, this is greatly needed. Unfortunately,

in doing so, it also obscures the spacial relationship between any two polygons in the object.

This makes it very difficult to construct triangular meshes, an efficient rendering technique on the

Silicon Graphics Iris 4D workstations, or to do collision detection between objects on an individual

polygon level. Nevertheless, in designivg the data structure to hold the geometric information in

memory, I decided that the memory savings were more critical to the design, so I patterned it after

this format.

Similarly, the duplication of descriptions in memory had to be avoided to limit memory

usage. GEOM descriptions are the basic building blocks for all the objects in the database. The

same description can be used across multiple objects, or a number of times within the same object.

A mechanism for managing these descriptions was required.

Another technique for the management of geometric data is the swapping of object descrip-

tions in and out of main memory based on their visibility to the eyepoint. This is required for large

gaming areas where the terrain information alone fills all the available memory in the hardware.

Unfortunately, with our target applications centering on synthetic environment concepts using

helmet mounted displays, the entire visible gaming area is just a head turn away. Additionally,

the GEOM file iormat is not well suited for rapid retrieval from disk due to the size and parsing

requirements of ASCII files. Thus, I decided to forego explicit memory swapping, and keep all

geometric descriptions in memory at one time.

20

3.3.2 Templates The next step in building up a synthetic environment is the capability

to hierarchically group individual component objects together to form complex objects, called

templates, and to store and retrieve them from disk as single objects. Speed and flexibility were

the key considerations in the design. These requirements led to the development of the Template

class and TEMPLATE file format. (See Section 3.4.2 and Appendix A).

In the construction of complex objects, or templates, a hierarchical structure was needed

for maximum flexibility. Hierarchical system are used in most standard graphical packages, like

PHIGS. I decided to use the PHIGS model as a guide to these requirements.

Figure 4. Pictorial representation of a HAND Template object.

In hierarchical systems, component objects can be positioned relative to a local coordinate

frame, or to another component, called its parent. The structure is tree-like, in that only one parent

can exist for any component, although a component can be the parent to any number of children.

It is also like a list, in that there can be any number of parent nodes in the template, positioned

independently.

21

A template structure is required to use GEOM files as its basic building blocks. The system

is not intended for use on a modeling level, to manipulate individual polygons, but from a much

higher level, to manipulate complete objects. A special TEMPLATE file is used to define the

components and their relationships. Along these lines, the number of components in a given

object, is fixed in the TEMPLATE file, and can only be changed there. Thus, templates are static

objects, although their components can move.

A hand template is an example of this kind of object (See Figure 4). A hand can be broken

down into a palm and five fingers, where each finger is modeled by only two finger segments for

simplicity. The palm would be one GEOM description, and a finger segment would be the other.

From these, every component in the hand can be constructed. The first finger segments would be

defined relative to the palm, and the second finger segments relative to the first. Of course, each

component must be independently scaled and rotated, a required capability of the Template class.

The result is a single object, the hand, with potentially movable parts. The Template format can

also be used to group multiple, independent objects together into a single object, like an airfield.

3.3.3 Multiple Resolution Object Abstraction The next requirement in the GDMS is to

take several template descriptions of the same object, at various levels of detail, and combine

them into a single multi-resolution object. The definition of these objects is handled through the

Translator class and the LINK file format (See Section 3.5.7 and Appendix A).

Multiple levels of detail can speed up rendering by controlling the polygonal throughput

to the hardware [See Olson (15)]. To provide a suitable mix between modeling, storage, and

rendering requirements, I limited the number of resolution levels to three, corresponding to low,

medium and high, with a fourth option being a bounding volume around the object. Three levels

limit the demand on the modeler, the memory storage, the disk storage, and the algorithms, while

providing flexibility in the system test their effectiveness [See Olson (15)].

The specific description files, GEOM and/or TEMPLATE, making up an object's three levels

of detail must be specified in some way. An application must know which description files to load

in memory, and how to link them to object instantiations in the database. There were two goals

for this portion of the design. The first was to isolate the programmer from the task of positioning

each level of resolution individually. The second was to minimize the complexities of linking the

22

multiple resolutions together. I came up with a system using three layers of abstraction to meeting

these requirements; object categories, type ID numbers and resolution levels.

An object category is a label representing a group of objects with similar functions, like

aircraft, or buildings. A type ID number is an identifier that corresponds to a particular object

defined in one of the categories. A resolution level is used to indicate the particular description

object for the low, medium or high level of detail.

TYPES

CATEGORY

AIRCRAFT

VEHICLE

SAM IP

0 /~

USERDEF

Figure 5. Object abstraction in GDMS.

A special LINK file is used to define these relationships in the GDMS. The file does two

things. First, it establishes an object category in the database, and second, it links each resolution

file to the appropriate object type defined. The Translator class must match up the resolution levels

for each object, regardless of the order they are defined in. Specifying all three levels of resolution

for any given object type is not required. Figure 5 illustrates the concept.

A programmer identifies an object definition by specifying its object category and Type

23

ID number. Rarely Will an application have need to refer to individual object resolutions, but if

necessary, the capability is provided. The programmer needs to know nothing of the actual file

names used to define the object, but these are also provided on request.

An advantage of this type of object abstraction is that users, by switching the LINK file,

can switch the images, without redoing all the object placements. This allows a battle manager to

manipulate a database using symbolic icons, and a flight simulator to use it with 'real' images.

3.3.4 Hierarchical Construction In keeping with a hierarchical model, complex, multi-

resolution objects must also be able to be grouped into even more complex objects. Just like

the templates described above, a PHIGS-like structure is used to accomplish this. Unlike the

templates, though, this level of construction is totally dynamic. Objects can be dynamically

altered by adding or deleting components from the structure at run-time. The GenList and Phigs

classes were developed to manage this complexity. (See Sections 3.5.2 and 3.5.3).

The structures were designed using linked-list algorithms. Linked-list mechanisms provide

the dynamic element needed. The interface follows the PHIGS metaphor of opening and closing

elements. This hierarchical capability should be inherited by any structure needing it. All objects

placed in a synthetic environment using GDMS are derived from the PhigsNode, which is derived

from the GenListNode (Refer to Figure 10).

To see how this might work, imagine an aircraft in a flight simulator application. The

list capability allows an aircraft to be loaded with as many missiles or bombs as desired, without

having to supply separate TEMPLATE files for each possible configuration. The individual objects

are created and attached to the aircraft as appropriate. To "fire" a missile, the application simply

detaches it from the aircraft and reinserts it as a separate object in the database.

3.3.5 Object Placement The construction of our abstract, multi-resolution, hierarchical

object has now reached the point where we can place it within the synthetic environment. The

Placement class handles this requirement (See Section 3.4.6). This type of object is called a

Placement object.

The actual Template descriptions for a given object type are defined at initialization. To

place, size, orient and color each occurrence of an object independent of the others, a unique

24

Placement object must exist for each occurrence.

To illustrate this, suppose one created two Placement objects of a SAM battery, where the

SAM missiles could rotate relative to its base through Template calls. If the same Template

descriptions were used in the object, rather than separate copies, then both missile racks would

rotate whenever one was moved. To avoid this, separate copies of each Template resolution for

each Placement object must be created. Terrain is an exception to this rule. Since terrain objects

only exist once in the database, their Template descriptions can be used directly.

A Placement object is at the pinnacle of the object hierarchy. It must manage all the

manipulation and rendering requirements for an individual object. These include control over

the dynamic movement of components, switching between levels of detail, resolution blending,

coloring, and coarse clipping options. The resolution blending and coarse clipping algorithms

were developed by Olson (15).

3.3.6 Object Management The next step in the construction of the database management

system is to take all the Placement objects generated, both terrain and other, and store them in

some type of structure for efficient access and rendering. The storage, in this case, includes both

the data structures, for active use, and disk files, for permanent storage and retrieval. The TGrid,

or Terrain Grid, class is responsible for these requirements (See Section 3.4.7).

In terrain-based environments, for which the GDMS is designed, a grid-like structure works

well for segmenting the database. Although a uniform grid is not required, it does simplify the

implementation, and is so designed. Individual terrain blocks are created, of a uniform size, and

linked together to form the gaming area. If the grid size is defined to match that of the terrain

blocks, then objects placed on the terrain naturally fall in the proper grid block. This leaves a much

smaller set to search for a particular item, so long as you know which block it is in. In most visual

applications, this is the case.

Another advantage of this approach is that it provides another level of coarse clipping. A

given terrain block might have several objects grouped with it. The block can be checked against

the viewpoint in the same manner as that of Placement objects. Large areas of the database can

thus be excluded from the pipeline to increase throughput.

25

Of course, the whole point of a database management system is to be able to manipulate

the objects in it, and save the changes. In designing the disk storage routines, I included the

ability to separate out the terrain information from the rest of the objects. This is useful in a

research environment, where one might want several different object files for any given terrain file.

The mechanism for permanent storage uses ASCII based files, called PLACEMENT files. (See

Appendix A).

3.3.7 Viewing The final function of a graphical database management system is to provide

the means to view the synthetic environment. To interact visually with the graphical database,

two items must be accomplished; a viewing volume/transformation must be defined and it must be

attached to a specific window on the display.

A viewing transformation takes objects within an imaginary volume in world space and

transforms their three-dimensional descriptions into screen coordinates for display on a viewing

device. There are two basic types of viewing volumes, orthographic and perspective.

An orthographic projection defines a viewing space using parallel rays. For non- skewed

volumes, the sides of the volume are perpendicular to the viewing plane. An object far away

appears the same as an object close up, all other factors being the same. This means that a position

defined in an orthographic window in screen space will correlate linearly in two dimensions with

world space coordinates. By aligning the viewing volume with the world coordinate axes, a

programmer can determine an object's position directly from the screen presentation. For instance,

by using an overhead view of the terrain, one can specify an exact location in X and Y by selecting

a point on the screen, and applying offset and scaling factors. A program can use this to place or

retrieve objects from the database. Of course, another mechanism must be used to specify the Z

position.

A perspective representation defines a viewing space as a pyramid, with the eyepoint residing

at the apex. Objects further away will appear smaller than objects close up. The distance away

from the eyepoint and the angle of ray divergence, or field- of-view (FOV), determine the relative

image size of an object. These views are useful for understanding spacial relationships between

objects. A perspective view i% used for out-of-the-cockpit views in flight simulators, or any views

where the movement of the eyepoint or 3-D effects are needed.

26

To allow for multiple viewports into the graphical database, a wiy was needed to set up

and control each one. This capability had to handle both orthographic and perspective viewing

volumes, and allow for dynamic positioning in world space. The View3D class was designed for

this (See Section 3.4.8).

It was also necessary to link a viewing volumetransformation to a window on screen, and be

able to render the database in this window on command. A generic capability was needed which

would leave the manipulation of the terrain grid entirely to the programmer, but which would

handle all the requirements for rendering and viewport manipulation. In addition, the system also

needed the ability to render a separate list of objects for use at the discretion of the programmer.

This list might include other aircraft or missiles in a flight simulator, or include objects being

manipulated in a battle management system. The goal was to relieve the using programmer from

as many of the direct viewport manipulations as possible by providing a higher level interface.

The World-Window class was designed to do this (See Section 3.4.9).

3.3.8 Summary In all, the requirements outlined above provide the basic capability needed

for a graphical database management system. I discussed the flow of structures from the individual

GeomClass component, to the complex Template object, to the multi- resolution object, to the

hierarchical Placement object to the Terrain Grid, to the viewing requirements. Each level builds

upon, or uses the levels below it. A similar relationship exists in the data files, from GEOM file,

to TEMPLATE file, to LINK file to PLACEMENT file.

The next section discusses the implementation issues involved in actually creating the

GDMS. The discussion is centered around the construction of the C++ classes used in the imple-

mentation.

3.4 ImplementationClass Construction

Each of the requirements discussed above are implemented through one or more C++

classes described below. The classes tend to align with the required areas in GDMS. Specifically,

geometric descriptions are handled by the GeomClass class, templates by the Template class, multi-

resolution object abstraction by the Translator class, hierarchical construction by the GenListNode

and PhigsList classes, object placement by the Placement class, object management by the TGrid

27

class, and viewing by the View3d and World-Window classes. Figure 6 illustrates the general

flow of the classes and data files, from the top level down.

Transltion Class

Geom I Template,

Class~ Placement ri
ClassCls

SWorldWindow View3D

Figure 6. Data and Class alignments in GDMS.

3.4.1 GeomClass Class The GeomClass is the class structure responsible for managing

the low level geometric descriptions. It holds all the information needed for rendering a geometric

object. In addition to the information on the polygonal structure, it maintains attribute information,

face normals, and statistical information, like number of vertices, polygons, and attributes. I had

two major concerns in the implementation this class. I needed to minimize the amount of memory

used, while maximizing the rendering speed. I used arrays for both speed and compactness.

The structure is set up to minimize memory for objects with shared vertices. It does this by

maintaining arrays for all the vertices, normals, and vertex colors (if applicable), which are then

indexed through a separate connectivity array for polygons. The connectivity array specifies how

the entries in the vertex and normal arrays connect to form each polygon. In this way, points that

would normally be duplicated in two or more polygons, can be stored in a single entry in memory.

28

This assumes, of course, that the modeler took advantage of this feature within the GEOM file,

and did not duplicate the points.

The GeomClass is by far the largest user of memory within the GDMS. I needed a mechanism

to prevent duplication of the GEOM files used during the construction of various objects within the

database. I developed a specialized class constructor, MakeNewGeom, which is used instead of the

normal constructor. This method crosschecks the GEOM filename against a static list of previously

loaded GEOM files to insure it had not already been loaded. If a match is found, the pointer to the

existing description is returned, otherwise, the file is loaded and its name is added to the list. A

given GeomClass can be removed entirely from memory through a special RemoveGeom method,

which also updates the static list.

For speed in rendering, I use simple loops with array indexing for access to the information.

I also sort the polygon array by attribute index to help minimize the amount of attribute switching

required during the rendering process. It is the modeler's responsibility to insure duplicate attributes

are not specified in the GEOM file, as this reduces efficiency.

To make the generation of bounding volumes more efficient in classes higher up the chain,

a mirdmax value along each axes is computed and saved. When queried for its bounds, the object

simply returns these values, since they can not be changed without changing the model.

The remainder of this section is devoted to miscellaneous information related to the func-

tionality of this class.

The rendering method is tied closely to the specific hardware of the SGI 4D. All the

parameters describing an image must be passed to the hardware using library calls. The lighting

model requires predefined material types, describing surface attributes for each different type of

polygon. The GEOM files contain this information, but it is difficult to compare attributes across

files to avoid duplication. The material types have to be defined on a GEOM file by GEOM file

basis.

To define any of these attributes, the SGI 4D graphics system must be initialized. This forces

the programmer to open some type of window, which initializes the graphics, before reading in

any GEOM file information. It is the programmer's responsibility to insure this occurs. A system

crash will result if this rule is not followed.

29

During loading of the first file, nine standard material types and three transparency patterns

are predefined to give programmers a basic set of colors and patterns for special rendering. Their

ID numbers range from one to nine, and will overwrite any definitions using these labels. In

addition, the polygon attributes pick up at ten and continue until all are defined. This leaves only

those ID numbers after the total number of attributes defined for use by the programmer. Of course,

the preset values can be overwritten once the first file has been read.

3.4.2 Template Class The Template class is responsible for managing the complex tem-

plate objects made up of GeomClass components. This class holds the information relating the

object descriptions to the components, and the relative orientation of each. The class is constructed

so any number of components can be defined for any number of GeomClass objects. The design

goals stress both flexibility of object construction and speed of rendering.

To accommodate the hierarchical structure required for complex objects, a data structure

containing pointers to child and sibling nodes, along with a modeling matrix and description pointer,

was created. The pointers, in this case, are actually indices into component and GeomClass arrays.

The Template class uses array structures to minimize access speed. As a consequence, the physical

number of components is fixed upon initialization. Neither addition nor deletion of components is

allowed, although they can be deactivated (meaning flagged so they would not be rendered).

The transformation matrices are 4x4 floating point arrays used to translate, scale, and rotate

a given component relative to its parent. The transformations are applied in pre-multiplication

order, which means they are formed with commands given in the opposite order from the intended

application. Since templates are in local modeling coordinates, the Placement class is used to

position the object in world coordinates.

All object resolutions in the database are Template objects. Templates are constructed from

either an individual GEOM file, or a special TEMPLATE file, which uses multiple GEOM files.

The TEMPLATE format is described in Appendix A.

The way the database is set up, a series of Template instances for each defined object are

maintained by the Translator class, and copied into an instantiation of a Placement object when

requested. The Placement object can then manipulate its own Templates without effecting the

30

other objects in the database. An overloaded equality operator is provided to accommodate the

copying process.

Although speed was a goal of the design, rendering for a template object was implemented

recursively due to the nature of the hierarchical structure and ease of programming. Performance

might be increased slightly by restructuring this method in an iterative approach.

Finally, like the GeomClass objects above, a bounding volume is computed and maintained

which encloses each component in the object. This is passed to the Placement class for coarse

clipping purposes.

3.4.3 Translator Class The Translator class provides a level of abstraction in the database

system to separate object descriptions from object identification. It allows programmers to work

with multi-resolution objects without tracking the individual filenames for each description. The

primary goal in the implementation was concerned with the programming interface to the other

classes.

The Translator class loads and stores a Template object for each resolution of each object

defined for the synthetic environment. A particular object, with its associated templates, is

identified through an object category and type number. The templates correspond to individual

resolution levels.

An object category is a special, predefined label designating a group of similar objects. For

this effort, I defined a particular set of object categories for applications in battle management

and flight simulation. These include TERRAIN, RADIOTWR, WATERTWR, HANGAR, SAM,

AAGUN, AIRCRAFT, VEHICLE, BUILDING, MISSILE, and USERDEF. The list covers most

of the objects found in these type of applications, with USERDEF being a catch all. Additional

categories can be added only by changing the code. This involves adding or changing entries to

the enumerated type 'objectType', and revising the methods for each class that uses it.

The type ID number is an integer corresponding to a particular item in an object category.

Users define the maximum number of object types for each object category that will be defined in

the file. The type numbers must be less than this maximum number, since they are simply indices

into an object array. The maximum number is used to allocate the array needed in memory.

31

Resolution indicators provide the final link to individual descriptions used for low, medium

and high levels of detail for any given object. The actual filename to a specific description is

passed to the database management system by indicating the object category, type ID number and

level of resolution. The Translator class places this information within a two-dimensional array

for easy access.

In addition to the Templates defined for each object, the Translator class also holds a short

name for descriptive purposes. A label of 'USERDEF, Type 1' is not very helpful for identifying

what the object actually looks like. The short name string, which is user definable, can provide

this type of information.

All this information is defined off-line in a special LINK file defined by the user. The LINK

file format is described in Appendix A. It is the user's responsibility to set up this file to define all

the objects which will be used in the database.

3.4.4 GenListNode Class The GenListNode class provides the links and methods to add

to, delete from, and iterate through a generalized list. This class is used to provide the basis for

the PHIGS-like hierarchical capability of Placement objects. Arrays are unsuitable for this due to

the requirement for dynamic insertion and deletion of objects in the database. A main goi cf this

implementation was adaptability.

A generalized list is a special list structure that allows any list node to hold either a pointer to

another list, or data on a particular item. For the GenListNode class, the model is modified slightly

and allows both data and pointers to coexist in a node at the same time. This was done to increase

the speed of access through all data nodes, and to simplify the implementation.

The GenListNode structure provides all the capability of a tree structure, with the versatility

of a doubly-linked list. The generalized list structure is quite versatile, and can be applied to a wide

range of applications. By using the inheritance and polymorphism of C++, the data structure can

be extended to track virtually any kind of data. In the GDMS, the GenListNode class is extended

to the PhigsNode class, which is then extended to the Placement class. Thus, the Placement objects

get the full functionality of a generalized list, without duplicating any of the code.

The GenListNode uses a child-sibling metaphor for the structure of the list. Any node can

32

be a parent, sibling or child of another node. A node can have either zero or one parents, but can

have an indefinite number of children or siblirgs. The sibling of a child is also a child. See Figure

7.

" Siblings

Data Data Data 0 0 0 S

I ft

*cp - Points to OPEN node
*head - Points to FIRST node

Figure 7. Generalized list structure within the PhigsList Class.

The hierarchical nature of the list allows for easy tail recursive methods for adding, deleting

or walking through the list. Nodes can be removed non-destructively if desired, for manipulation

and reinsertion, perhaps at a different level. The back-pointing links in the node structure simplify

the insertion and deletion algorithms. They also allow for the implementation of algorithms where

recursion is unacceptable.

A special iterator is provided to walk through the list, while performing a programmer defined

action. By taking advantage of the polymorphic nature of inherited objects, specific actions on

derived objects are possible. The iteration scheme follows a modified depth first algorithm, where

the action is performed first on the current node before descending to the next node. This is to

allow for proper pre-multiplication of matrices during object rendering.

33

3.4.5 PhigsNode/PhigsList Classes The purpose of these classes is to provide the list

management functions needed to implement a PHIGS-like structure using a generalized list. The

PhigsNode class simply extends the GenListNode class to include a node ID number and a PHIGS

status flag. The PhigsList class provides PHIGS-like calls for managing the generalized list of

nodes. The goal of this implementation was to isolate the programmer from as many of the internal

details of the PHIGS hierarchy as possible.

These two classes work hand in hand with GenListNode class to provide a PHIGS-like

interface. The PhigsList maintains the head of the list, as well as a current pointer into the list.

Nodes are manipulated relative to the current pointer through PHIGS-like calls of Open, Close,

Create, Attach and Detach. Global methods are provided to clear the list, locate the current

position, return the head or perform an action. The PhigsList can manage any type of node derived

from the PhigsNode class.

As an example of how the PhigsList class is used, I will go through the steps of building

up a placement object in the database (See Figure 8). The example will be of an F-16 with two

missiles attached to the wings. This assumes that the F-16 and missile descriptions have already

been loaded through the LINK file.

The programmer must first instantiate the placement object for the F-16 using 'new' operator

on the Placement class. The resulting pointer to the object is then loaded into the database with

a unique ID number using the 'Create' command. The unique object number applies only on the

level assigned (among siblings) and is needed to retrieve the object at a later time. The current

pointer now refers to the F-16 node, which is considered 'OPEN'.

Now, a missile can be created in the same way. After positioning it relative to the F-16

with Placement class methods, it is loaded on the aircraft with another 'Create' call. This time,

however, a 'Close' call is made to close the child and move the current pointer back the parent

F-16. The same steps apply for the second missile.

With the missiles loaded, a final 'Close' call will close the F-16 object and return the current

pointer to NULL status. Additional missiles or bombs can be added later by first opening the F-16

object with the 'Open' command, and following the same procedure. In this way, a hierarchical

object list like that shown in Figure 9 can be made.

34

II OList is ptr to Translator class
// Figs is a ptr to a PhigsList class
// Object is a ptr for a Placement class

// ******FI6******

// 2 below is a reference to the F16 type description
Object = new Placement (AIRCRAFT, 2, OList);
Object->SetPosition (1000, -2500, 10000);

II 1 below indicates the ID number for later reference
Figs->Create (1, Object); // loads F16 on list

// ******Missile i******

Object = new Placement (MISSILE, 1, OList);
pushmatrix (); II uses library calls to
loadmatrix (idmat); I/ construct matrix which
translate (-10, 7.5, -.5); II which positions missile
rotate ('z', 90.0); II relative to F16 parent
getmatrix (m);
popmatrix ();
Object->LoadPositionMatrix (m);
Figs->Create (1, Object); II loads M1 as child of F16
Figs->Close (; // closes M1

// ******Missile 2******

Object = new Placement (MISSILE, 1, OList);
pushmatrix ();
loadmatrix (idmat);
translate (-10, -7.5, -.5);
rotate (1z', 90.0);
getmatrix (m);
popmatrix ();
Object->LoadPositionMatrix (m);
Figs->Create (2, Object); II loads M2 as child of F16
Figs->Close 0; II closes M2

Figs->Close 0; I/ closes F16

Figure 8. Example of method calls for the constructing F-16.

35

For maximum flexibility and speed, the class provides methods to make node pointers

directly available to the programmer. They are provided to allow programmers to make calls of

the given object class directly. The programmer has the responsibility not to corrupt the internal

linkages. For instance, if a programmer gets a node from the list directly, and then deletes it himself

without first detaching it, the system might crash. This could occur because the PhigsList pointers

to the head and current node might now point to unallocated memory. Actions like this should be

accomplished with the provided PhigsList methods.

Children

F-15

F466

SAM.

Figure 9. Possible PhigsList construction of Placement objects.

3.4.6 Placement Class The Placement class provides the structure and methods to define

multi- resolution, hierarchically based objects, or placement objects, to load in a synthetic environ-

ment. Placement objects are classified into one of two possible groups, static or dynamic. Static

objects consist of the TERRAIN and the objects on it that do not move. Dynamic objects are items

like aitcraft and missiles that do. Static objects will far outnumber the dynamic objects in most

36

scenarios. The only difference between the two is that the programmer must maintain the pointers

to the dynamic objects separately to be able to manipulate the objects efficiently.

The major components of a Placement structure include three Template objects, a transfor-

mation matrix, resolution switching information and a bounding volume. The design of this class

is centered about the efficient management and rendering of the multiple levels of detail.

There are two methods for creating a Placement class object. The first is to pass in an

object category and type identifier to the constructor, followed by up to three Template pointers

corresponding to the three image resolutions. These Templates can be generated independently or

retrieved singly from the Translator class (See Section 3.4.3). For objects already defined in the

database, additional levels of detail can be added or replaced with the LogTemplate method. Of

course, there is still a maximum of three resolutions per object.

The second approach is to pass the address to the Translator class, itself, instead of the three

Template pointers, and let the constructor extract the available levels of detail on its own. This

eases the programming interface for creating objects directly from the Translator class.

The Placement class is a derived type of PhigsNode, so multiple objects can be linked and

managed by the PhigsList. As such, it extends the hierarchy beyond the Template class, to include

multiple resolution components, while allowing for dynamic insertion and deletion of components.

Care must be taken during dynamic insertions to place the child component relative to the parent,

as opposed to the world coordinate system. See the F-16 and missile example in Section 3.4.5.

By the same token, objects dynamically detached must be converted back to world coordinates to

allow for proper placement on their own in the database. Consequently, there is more overhead

involved in this process.

Each Placement object, whether parent or child, has a transformation matrix to position,

rotate and scale its three dimensional description. Just as in the Template class, this matrix is a

4x4 floating point array. The difference is in how it is used. The transformation matrix is applied

to whichever resolution is active in the component at the time of its rendering. In addition, for the

base node, or parent object, the matrix is applied relative to the world coordinate system, instead of

the parent's local coordinate system. This is how entire objects are place or moved in the synthetic

environment, through the transformation matrix of the base node.

37

Before rendering a placement object, the class must determine which resolution to choose

of those available. There are two ways to do this. The first is the simplest, where the programmer

just specifies the resolution desired. For objects that do not have the particular resolution defined,

the rendering method switches to the next most detailed resolution available. The second method

involves selecting resolutions automatically based on the distance from the eyepoint. The distance

calculated is from the origin of the object's local coordinate system, not necessarily from its

centroid. The effect of this is that for objects modeled with the origin off-center, the resolutions

will switch at different apparent distances from the user, depending on the direction of approach.

The rendering method compares this distance with user definable switching distances to determine

which resolution to render. These switching distances define two hysterisis bands for transitioning

between levels of detail. The hysterisis prevents cyclic image toggling when objects are very near

the specified distances.

The Placement class has two ways of setting the switching distances, manually and com-

putationally. The first method allows users to override the default settings in the system. The

second sets them based on a single field-of-view (FOV) parameter. This method uses the FOV

to determine what percentage of a window the object takes up at certain distances. Or, inversely,

given the percentages desired, it finds the distances to which they correspond, which are the

switching distances. These percentages were determined empirically using a 'that looks about

right' approach and are coded directly into the program.

The switching distances can be used to simply toggle between resolutions, or used in a more

advanced technique of blending (See Olson (15)).

Bounding volume information is the last block of data maintained in the class on each object.

Bounds are set by querying the three resolution templates for their individual volumes to establish

an overall volume. This volume is used for collision detection and coarse clipping purposes. The

volume vertices are kept in world coordinates to speed up the coarse clipping algorithm. This was

done to optimize the handling of static objects in the database. A consequence of this, however,

is that for dynamic objects, the bounding volume has to be recomputed whenever the object has

moved.

I have already mentioned many of the factors impacting the rendering process, now let us

38

look at the different rendering options. Rendering is activated through a suite of four overloaded

Render methods. Each involves a recursive procedure due to the hierarchical design of the class

objects. One set of Render methods provides coarse clipping of all objects. The other set relegates

clipping of each polygon entirely to the hardware. Within either set, one method activates automatic

resolution switching, the other allows the programmer to set a specific resolution, including an

option to render just the bounding volume.

As a final service, a recursive method can save the structure of the Placement objects to disk.

The recursive nature of this method allows a single call from the head node object in a PhigsList

to save the entire contents of the list. An open file handle must be supplied, along with a mode for

saving objects. The programmer can select ALL objects, ALL but TERRAIN, or TERRAIN only

objects for saving. This allows the programmer to separate the terrain and object placements into

different files, or merge them all into one.

3.4.7 TGrid Class The TGrid class, or Terrain Grid, maintains the information and meth-

ods needed to populate and manipulate a two-dimensional grid of static objects. This includes

both terrain and cultural features. The class was designed to meet the requirements for database

object management (See Section 3.3.6). The thrust of the implementation was on efficient access

and rendering of the entire static database.

The grid structure consists of a dynamically allocated 2-D array of grid nodes spanning the

gaming area. Each node contain a PhigsList and a bounding box. The PhigsList holds the objects,

while the bounding box surrounds them all for coarse clipping purposes. The TGrid is intended to

hold only Placement objects.

The grid is defined in world coordinates on the X-Y plane, using the minimum and maximum

values, and a spacing parameter. The terrain must be modeled with the Z coordinate up to fall

properly on the grid. The array dimensions are computed using the grid size parameter, to form

a uniform grid. Dividing the length of each side by the grid size determines the number of nodes

in that direction. The (0,0) position of the 2-D array is always the lower left comer of the grid

(South-West). The grid can be defined anywhere within the XY-plane. A method is provided to

convert world coordinates into uniform X,Y grid coordinates.

All objects are controlled by the grid node in the lower, left comer of the grid square they fall

39

on, with the exception of objects placed outside the grid. These are controlled by an appropriate

exterior grid node. The process is entirely automatic. The programmer simply sets the object's

position matrix to the desired location in world coordinates, and adds it to the grid. The grid

method assigns it to the appropriate grid node. This method uses the location of the object's local

origin, not necessarily its centroid. The programmer must also provide a unique ID number for the

object to be able to retrieve it from the grid, so a special GetUniquelD method is provided.

The TGrid class is designed to allow the programmers to interact with the database in a

direct manner. The methods are visually based in that they expect the application to provide the

general position of the objects requiring access. A reference position, or a designated area in world

coordinates must be passed to the methods providing access into the grid.

One method, GetNearestObjectBeyond, searches for the nearest object beyond a specified

radius, relative to the reference position, and returns a single object pointer. Only the current grid

square, and the immediate squares surrounding it are checked. This method does not actually

remove the object found from the grid, but it does give the programmer access to it for functions

like selection highlighting, etc. The method is designed to walk the radius out until the proper

object has been selected, where it can then be detached and manipulated.

The other method, GetObjectsInArea, gathers all objects within a specified area and puts

them in a separate PhigsList for return to the application. Only those grid squares intersecting the

area of interest are searched. Unlike the method above, this method actually removes the objects

from the grid. Area selection is intended for large scale manipulation, such as area deletes, copies,

or moves.

Both methods exclude terrain objects from the selection searches. This approach is taken

since terrain objects are tied to a specific location in world space, and must remain fixed to match

with the other terrain blocks.

As an interface concern, to minimize the requirements on the programmer, and maintain an

effective coarse clipping algorithm, the appropriate grid square bounding volume is automatically

recomputed whenever an object is added or removed. The total grid min and max altitudes are

updated at this time, also.

40

To provide a permanent storage and retrieval mechanism, this class contains the methods

for reading and writing object placement information to disk. The PLACEMENT file format is

defined in Appendix A. The methods are LoadDatabaseFile and SaveDatabaseFile.

The LoadDatabaseFile method allows programmers to take the object descriptions from the

file, and either append them to the current grid or create a new one. The programmer can specify

the type of objects to be loaded: ALL, ALL but TERRAIN, or TERRAIN only. This method is

used exclusively for loading static objects into the grid, although the code can easily be adapted

for loading dynamic objects.

The SaveDatabaseFile method is used to save the grid objects to disk. It also has the same

options for specifying the object types as the load method. The method can be made to append its

objects to the end of a file, or overwrite a new file. The combined capability gives the programmer

considerable flexibility.

Four rendering options exist, corresponding to the Placement object rendering options (See

Section 3.4.6). These are integrated within the World-Window class to simply the selection options

for the programmer. Similarly, a display option to draw the grid lines at some specified altitude

is also integrated with the World-Window class. Of the options available, the most time efficient

rendering mode uses coarse clipping and automatic resolution selection.

3.4.8 Vlew3D Class The View3D class is responsible for the structures and methods used

to define and manipulate a viewing volume, which in turn defines the viewing transformation. This

class is used in conjunction with the World-Window class to provide a viewport into the synthetic

environment for the graphical database management system.

This class was originally designed by Olson (15) during development of a specialized

viewing application for GEOM files. Major design changes in the operation and structure of this

class were made to adapt it to the GDMS. The class was restructured to follow more of a classic

object oriented approach, verses a procedural approach. The design concentrated on efficiency

and functionality.

The View3D class uses the 3-D viewing model described in Chapter 6 of (7). All the

parameters can be set and retrieved by the programmer. Both perspective and orthographic

41

projections are supported. The SGI architecture splits the viewing transformation defined in Foley

et al (7) into two pieces, a static projection matrix and a viewing matrix. It uses the double matrix

mode to specify the volume constraints separately from the positioning information. This is to

increase the speed of rendering since the projection matrix generally remains unchanged (18).

The View3D calls fall into two categories: those that set up the viewing volume, or projection

matrix, and those that position and orient it in world space, the viewing matrix.

The first set defines size and shape of the viewing volume. Methods exist to, -. fine the viewing

window, set the projection reference point (PRP), establish the front and back clipping planes, and

designate the type of projection to use, orthographic or perspective. The ComputeProjection

method takes this information and computes and loads a projection matrix for use with the SGI.

It is the programmer's responsibility to call the ComputeProjection method after the volume is

defined or changed, but before any objects are rendered.

The second set directs the orientation of the volume in world space. Methods exist to set

the view reference point (VRP), the up vector (VUP), and the view plane normal (VPN). The

Compute3Dview method takes this information, computes the viewine matrix, and loads it on the

hardware. The Compute3Dview method is called from within the World-Window class prior to

each rendering of the database. Programmers that use this class, but do not use the World-Window

class to attach the eyepoint to a window on screen, must insure the Compute3Dview method is

called for each frame update.

This class also maintains special parameters and methods for the rapid coarse clipping of

bounding volumes. This ties in with the rendering options in both the TGrid and Placement classes.

The IsVisible method accepts an entire bounding box, instead of just a single point, for efficiency

reasons, and returns its visibility with respect to the viewing volume. The algorithm was developed

by Olson (15).

3.4.9 World. Window Class The World-Window class contains the structures and methods

needed to bind a terrain grid and an object list, to a window and viewing volume. This class

is derived from both the View3D class, described above, and the Window class, developed by

Simpson (19). The class was designed to handle all the rendering and viewport manipulations

42

needed in most applications. The implementation effort concentrated on the class flexibility and

programming interface.

The World-Window class inE,'ges the position and orientation of the viewing volume with

respect to the window on the .creen, and renders the database as appropriate. The methods break

down into two major areas; rendering of the images, and control of the viewing volume.

The class keeps two pointers for rendering of the database; one to a terrain grid, and one

to a PhigsList. The terrain grid holds all static objects in a database. The PhigsList holds all the

dynamic objects. It is the programmer's responsibility to load and manage these items. They are

kept for rendering purposes only. Methods exist to specify the rendering options available with

these items.

Programmers can also select a number of display options, such as overlay information on

the view volume, axes display and text, grid line drawing, and lighting model.

The remaining set of methods deal with manipulating the viewing volume relative to the

images displayed in the window. These include Pan, Moveln, Swivel, Roll, Zoom, and Rotate-

AboutOrigin methods. These methods compute all the parameters needed for the View3D class

to perform the desired action. Programmers may also manipulate the viewing volume directly

through inheritance using View3D calls.

A programmer updates the images on screen by simply calling the Redraw Window method,

after changing any of the parameters. This, in turn, calls the Draw-Window method which makes

the appropriate calls to the hardware, and applicable classes.

3.5 Summary

The nine classes described above work together to provide a flexible, yet powerful, graphical

database management system. The classes are diagramed in Figure 10. GDMS was designed

primarily for synthetic environment applications, like mission planning, battle management or flight

simulation, but can also be used for many other types of graphical database applications. GDMS

gives a programmer a set of classes that provide a high level interface for storing, manipulating

and rendering three-dimensional graphical objects on an Iris 4D workstation. The next chapter

43

IsOsodAWAd Goodum~ue S*emtmv~a Rendevv M is

Toysm -ria Trnlao vpdkR~ftd wObp vu
Osiilugt Nia Yati LAIenks t lilenomnet Ok; wan mmmix vai

Thai OMjd Xa Yan Nunveu frype11 Schal e G(3ja 4dieft sit vax ionpT
Fleeme Xiaufty Rot......... te: Slece trui3 LbmodoMIl Se R

ReI~neder oyol Rae

Inbee any Xms Urn Urn: Pi Callsm mi o i

Filesame, XiFigure 10.------- Class: daram for 7D2 R

Stalc~bpts O~in~pe(3 44

discusses the design and implementation. of an application using GDMS, a synthetic environment

database generation system.

45

IV The Database Generation System (DBGen)

4.1 Overview

This chapter discusses the detailed design and implementation issues effecting the develop-

ment of the Database Generation System (DBGen). It reviews the decisions made in the structuring

of this application. The specific requirements for DBGen were developed by the author to test

GDMS, and provide a capable database generation system. The goal was to develop a tool to allow

users to take previously defined models and place and manipulate them on a terrain grid interac-

tively. DBGen is not considered a modeler, because it does not create or manipulate the primitives

making up individual object descriptions. The modeling is left to other programs. This program

takes their output and combines them into synthetic environments. A driver program, GDMS,

and a few extra classes were needed to do this. Figure 11 shows all the classes incorporated into

DBGen. The asterisked items are part of the GDMS library.

Database

~Generation
• !:! ::System

Interactions Inheritance * GDMS Modules

Figure 11. Classes used within DBGen.

46

DBGen was designed to use as many of the features of the graphical database management

system as reasonable. Its implementation fulfilled three primary functions. First, it tested the

majority of the methods used in the GDMS software, and forced the refinement of the class

interfaces for general use. Second, it provided a platform to develop and test many of the special

algorithms needed for the Battle Management System and the Object Oriented Flight Simulator.

Third, it provided the means to generate synthetic environments for use in SEL research.

Figure 12 shows the general flow of data between applications in the SEL. The Terrain

Construction Tool generates the GDMS terrain files from Digital Terrain Elevation Data (DTED).

The Database Generation System uses these files, along with additional geometric descriptions,

to populate the terrain with objects, and outputs the resulting GDMS object files. The Flight

Simulator and Battle Management System then use these files to build up their gaming are. for

their particular application. Each application uses GDMS to manage the graphical database.

.Fig htSimlaon i
Special Effects pd liatn

47Y

GWW ti n Si++i

R1 awghdSme ato P1.A t a t :

Objecte: "
< ,, Sei~aEffects Application'- I

Figure 12. Overview of data flow between SEL applications.

This chapter has three sections. The first section discusses the general requirements desired

47

in a synthetic environment Database Generation System. The second section covers some of the

decisions made in the design and implementation. The last section outlines the specific class and

driver structures developed during the implementation.

4.2 General Requirements

The requirements for the Database Generation System (DBGen) drove many of the design

decisions in the graphical database management system. By the same token, the other efforts in

the SEL impacted the design of DBGen. As these applications developed their own requirements,

the database management system was updated/modified to acconmodate them, after which the

changes were incorporated into DBGen, if reasonable. As a general goal, the Database Generation

System was designed to incorporate as many of the basic features required by both the Flight

Simulator and the Battle Management System as possible. Of course, it also needed to meet the

requirements unique to its own application. These requirements broke into four broad categories;

file management, object editing, environment control, and user interface.

4.2.1 File Management All SEL applications are terrain based. The terrain files used

within this application, (GEOM, LINK and PLACEMENT), are generated by Duckett's system

(5). During updates or additions to a given terrain block, his system overwrites these files with the

new information. To preclude the loss of any overlaid static object information placed by DBGen,

the terrain information is separated from the rest of the database objects, which drove the capability

in GDMS (See Section 3.3.8). The terrain files can be updated at will, changing resolution or total

area, without affecting the objects already in place. Multiple object files can also be developed to

give different object densities/positioning over the same set of terrain, without duplicating all the

terrain information on disk.

4.2.2 Object Editing The Database Generation System is primarily a visually oriented

program, as opposed to a text-based program. A user manipulates objects in the database by

observing the change in the images on screen due to inputs from the mouse or keyboard. Most

settings are changed through on-screen buttons or pop-up menus. The format for DBGen is

similar to many of the common presentation programs available on personal computers, such as

Corel Draw (TM), Draw Perfect (TM), etc. These programs manipulate elements like points, lines,

48

boxes, or even entire objects on screen to form complex 2-D images. DBGen manipulates complex

three-dimensional, multi-resolution models, to form 3-D synthetic environments.

Both these applications create and manipulate what is essentially a database of objects. In

each, the basic editing requirements are the same. The program must provide a set of building

blocks to be used for database construction. It must allow the user to add or delete these blocks to

the database at will. It must also allow the user to move, orient or resize these blocks either during

or after insertion. For convenience, the user should also be able to copy or mirror existing blocks

in the database.

Inherent in many of these features is the requirement to be able to identify and retrieve

objects from the database, which demands two capabilities. The first is a picking option, where the

user can select, or deselect, an individual object in the database. This is usually relative to some

type of pointing reference, like a mouse cursor. Multiple objects can be specified in this manner.

The second is an area selection option, where the user can specify a region on the screen, and all

objects falling within the boundaries of this region would be selected. This block of objects would

then be treated as a single object for manipulation purposes.

Finally, the program must be able to store the final product to disk and retrieve it again at

a later date for further modifications. The files generated in DBGen are the same files used and

manipulated in the other SEL applications.

All these requirements are strongly tied to the capabilities of the GDMS, upon which this

application is built. As the requirements were implemented, additional methods and restructuring

were often required of the database management system. Thus, the design and development of

both DBGen and the GDMS proceeded iteratively.

The information used to define the database is provided in external files. These include

the LINK and PLACEMENT files for the terrain, the master LINK file for object descriptions,

the PLACEMENT file for positioning information, and all the TEMPLATE and GEOM files

modeling the objects themselves. Filenames for the LINK and PLACEMENT files used for

DBGen are required to have 'Ink' and 'dbs' extensions, respectively. All these files are ASCII

based. DBGen's primary function is to create or modify the object PLACEMENT file, which it

does through the graphical interface. To give the user some type of editing capability in the other

49

areas, DBGen provides a pop up shell to 'vi'. The program is suspended until the 'vi' session is

completed, after which shell window is automatically closed. Changes will only take effect if the

file is specifically reloaded by the user.

4.2.3 Environment Control Environment control allows a user to manipulate parameters

global to the whole program environment. Categories include parameters that effect how the

program interacts with the database and how the user interacts with the program.

Figure 13. Terrain viewed at MORNING setting in DBGen.

Interactions with the database include lighting control and rendering options. In a lighting

model, direction, color and intensity have a significant impact on the images formed from three-

dimensional databases. For terrain based environments, this coincides with the time of day (See

Figures 13 and 14). By varying the direction to the light source, one can simulate the position of

the 'sun'. Variations in color and intensity also contribute to the effect. The light is assumed to be

at infinity to reduce rendering time. To give the user a look at the terrain under different lighting

conditions, DBGen needed some means of varying the time of day. It uses four settings, morning,

50

noon, afternoon and twilight, as characteristic times. Suitable parameters are passed to the lighting

model when an option is selected.

Figure 14. Terrain viewed at AFTERNOON setting in DBGen.

For rendering purposes, the user has several more options. The database management

system provides four methods for rendering objects (See Section 3.3.6). The user needs the ability

to select these different modes. They include auto or manual resolution, with or without coarse

clipping. This allows the user to gather measures of the effectiveness of each mode, for modeling

and analysis purposes. Similarly, the blending feature between resolutions in auto mode must be

user selectable. A popup menu is provided to accomplish this.

The second category of user interaction with the program includes control of viewing modes,

view volumes, and information displays.

DBGen has two primary viewing modes, an object placement mode and a fly-through

mode. Given these two capabilities, a method for switching between them is obviously required.

In addition, they are sufficiently different in purpose to warrant separate window formats (See

Figures 15, 16, and 17).

51

The first mode deals with object placement. Placing three-dimensional objects onto three-

dimensional terrain in a graphical environment is difficult to accomplish, especially without cues

like stereopsis, shadows, sound, pressure, and many other inputs we use in the real world. DBGen

needed a purely visual mechanism for orienting objects with the terrain, one better than a single

perspective window could provide. To do this, three separate views, one on each axis of the

object being manipulated, looking back at the object, is provided (See Figure 15). This helps the

user control the placement much better, even on sloping terrain or when a particular viewpoint is

blocked by other items in the database.

Placement Format Fly-Through Format

B B

Overhead view u u
t t

(Orthographic) t t

(Aligned with z-axis) 0 o
n Fly-Through view n
5 S

S S
Side 1 Side 2 a

(On x-axis) (On y-axis) t _
U

U

p . .."

StiM I ((--S4)0

Figure 15. Window Layouts with corresponding views in DBGen.

The second mode is the fly-through mode. The user needs one large screen, with an attitude

reference indicator for positional awareness. This mode gives the user direct feedback on what a

flight simulator view of the database would be like (See Figure 15). It also provides feedback on

the update rates possible for various scene contents.

52

Each window used in positioning and fly-through modes is generated from the World-Window

class of GDMS. This gives each window its own viewport into the synthetic environment, which

can be manipulated to provide various views of the database. DBGen requires a means to do this,

as well as the option to reset the variables default values.

Related to this is the display of information detailing the current settings for each window.

This information is displayed directly in the window, through a WorldLWindow function. The user

needs the option to turn off this display to avoid clutter.

Other display options include object axis and grid square lines. A special szatus window

was used to present information global the entire application. A Text-Window [See Simpson (19)]

was used for this purpose.

Figure 16. Picture of Placement window format in DBGen.

The window layouts for the two different formats are shown in Figure 16 and 17.

4.2.4 User Interface A user interface permits the selection of program functions. How

intuitive that interaction is relates to the usability of the program. A user interface, alone, can

53

Figure 17. Picture of Fly-Through window format in DBGen.

often leave a user cursing or praising a program. As a guide, I returned to commercial drawing

programs.

Successful commercial programs generally use a menu bar and a series of icons to activate

commands or select options. Icons give the user immediate access to the most commonly used

commands. Menu bars minimize the clutter on the screen, while allowing access to secondary or

configuration type commands. A button bar window can be implemented to serve both purposes.

Buttons can activate a command option directly, switch a mode, or call up a menu for more

detailed options. The button color can be used to indicate the status of a particular button option.

Additionally, the button title should be changeable to toggle modes. See Section 4.4.1 concerning

the ButtonWindow class.

It is important to be consistent throughout the user interface. The user should only have to

learn one methodology, and then be able to use it to access the entire program. That methodology

should be as simple as the application allows. The hardware system influences what user interface

options are supportable in a program. The SGI 4D provides a tightly integrated mechanism for

54

linking inputs, from either the supplied three-button mouse or keyboard, to a particular window

on the screen. Other input types include joysticks, spaceballs, or datagloves, but their control

mechanism is through separate RS-232 ports. The structures for controlling these alternate input

devices were still in development by other thesis students during the implementation of DBGen.

Consequently, they are excluded from the design. DBGen was implemented using a predominately

screen based, mouse driven approach, with keyboard augmentation when necessary or convenient.

4.3 Design and Implementation

In the following sections, I will cover the major elements in the design of DBGen. I will

describe object selection, manipulation, type identification, insertion and interface issues. Where

applicable, I will indicate the C++ classes that were developed to attain the design goals. These

classes are described in Section 4.4.

4.3.1 Object Selection Objects must be selected from the database before any type of

manipulation can occur. The GDMS TGrid class provides this capability. Whether objects are

individually selected, or gathered from a specified region, they must be designated in some way

for identification by the user. Each object uses a color index parameter for this purpose. Within

DBGen, an object c& only have three states; normal, selected, and active. An object is in a

normal state before it has been selected. In this state, objects are rendered using whatever colors

are specified in the GEOM files. The selected state occurs when the user selects an object in th&c

database, which places it on a selection list. The selection list is rendered in red (See Figure 18).

The user can select as many objects as are in the database, excluding terrain. Terrain is not

selectable for modification because it must remain fixed with respect to all the other terrain blocks

in the database. Once the user has selected the objects desired for manipulation, he changes their

state to active. This is indicated by changing their color to green (See Figure 19). The selection list

now becomes the active list, and no other objects may be added until the objects are reinserted in

the database, or the list is returned to the selection state. For a list in the selection state, switching

editing modes from one state to another will automatically change the list to active.

55

Figure 18. Picture of objects selected in the database.

4.3.2 Object Manipulation The list of active objects is treated as a single complex object

for manipulation purposes. A center point in three dimensions is computed by averaging the

positions of all the objects on the list. Rotations, scales, and translations are all relative to this

center point. This allows the user to drag an entire collection of objects to another position and

reorient it. A user can quickly build up n.Altiple groupings, like airports or townships, using the

copy function and the drag feature. Individual object manipulation is a special case with a single

object on the list. In the active state, users can switch between editing modes, like scale, move,

orient, or copy. Selecting add mode, however, will cause all items on the list to be reinserted

automatically. The list must be cleared to allow individual objects to be added and oriented on the

terrain. After the user has completed any desired manipulations of the active list, he can reinsert

the objects in the database, or return the list to the selection state. The mechanics of selection and

activation are discussed in the User's Manual (See Appendix B).

4.3.3 Object Type dentification Creating an object for insertion in the database is some-

what different than direct manipulation of an existing object. It requires the user to have explicit

56

U

Figure 19. Picture of object, activated for modification in the database.

knowledge of the available objects for insertion. In DBGen, these objects are not defined until

run-time. This is unlike most commercial drawing programs where the primitives are known be-

fore hand. This requires DBGen to build up an object description interface dynamically, from the

master link file. It queries GDMS about the object definitions available, and builds up a multi-level

menu tree to walk through available selections, from category to type ID to level of resolution,

as appropriate. By linking this menu structure to a visible button on screen, the user gains quick

access and a familiar menu format for selecting objects for insertion in the database (See Figures

20 and 21). The same methodclogy is used throughout the Button Window Panel, popping up

menu trees for selection by the user as needed. Buttons with menu popups are indicated with

trailing ellipsis (...).

4.3.4 Object Insertion Objects are inserted in the database by selecting a particular object

definition, and then indicating the position on the terrain with the mouse. Object placements are

accomplished only in the overhead, orthographic view of the placement window interface. An

instance of the object definition is created and activated for manipulation by the user. The user

57

Clear All Aircraft so]
Load Terrain Hangar so
Load Master Link Building s

BUTTONS Load Placement Objects so WaterTowerso
Save Placement Terrain w# RadioTower.o

File Save Placement As Master Link ... so
Save Composite Other Userdef so

Pick Area Edit Files IWOPick Item in

MoeAircraft I1Placemnent

Copy Hangar TypeDeeeBuilding so Type 2

Oreet_ WaterTower-O Type 3 Tp u
inScale l rRadi°Toweror V . -. . . Type 3@

Add.. Userdef so Low .

Zoom/Pan_ Resolution ,, Medium

Tri-Window Time Of Day
Fly-Window Toggle Info Display HgBouni

Toggle Axes Display
Settint Toggle Coarse Clipping Mori__

Exit_ _ Toggle Resolution Blendin Noon
Togle Grid Lines AftrNn
Reset View

Figure 20. Cascading menu structure accessed through the Button Panel.

58

Suiu U

* k flru.[,rlu Piok tre"f Il e . .. P it..

1.1 Sal e 1.[Pick I t"

st

Inik]t Rat Xi [][
'lzn l pot YPi 9.0]I

- VEHICLE *l11!

I --

III 1 restl

, d II

SE, US R E IVP acmn FII

Figure 21. Pictures of Button Window and Status Window panels in DBGen.

is required to orient, and deactivate the object, before adding another object. To increase the

efficiency, of inserting objects in the database, the previous scale, rotation and altitude values are

kept to apply to subsequent objects of" the same type. If the user changes object types, however,

the scale and rotation values are reset, but not the altitude. This is done because different object

types might not be defined in the same local coordinate frame, nor with the same scaling factors.

The altitude is a world coordinate parameter, and applies to all objects. Saving it helps greatly

with placing multiple objects on terrain that is above sea level. Objects created with the add

command are manipulated using the orient mode. The status window, show in Figure 21, provides

information on these values. See the User's Manual in Appendix B for detailed mode interactions

and Status Window description.

4.3.5 Mouse Interf'ace The mouse is the primary means of user input in DBGen. With the

numerous windows and functions required, the methodolog" was designed to be as consistent as

possible across the various windows. Each button on the mouse controls a general type of action.

The particular window and the modes selected determine the specific actions that are accomplished.

59

The middle mouse button manipulates the viewing volumes of each window. It allows the

user to zoom or pan the view, depending on the mode set in the Button-Window. Zooming varies

the shape of the volume, while panning varies the position.

The right mouse button is used to toggle states. In the Placement windows, it changes the

objects on the selection list to active, or from active to normal. In the Fly- Through window, it

activates the fly mode, starting and stopping the flight through the synthetic environment. In the

Button-Window, it changes the modes or selects the items in the pull down menu.

The left mouse button carries out the actions of the modes selected. In the Placement

windows, it performs two separate functions, depending on the status of the object list. If the list

is in selection mode, left mouse perform a selection function, either putting objects on the list,

or taking them off. If the list has been activated, the mouse movements manipulate the object as

applicable to the window and the editing mode active. See the User's Manual for specifics. In

the Fly-Through window, the left mouse button performs the function of the flight controls. In

fly mode, it controls roll and pitch rates during flight. In stationary mode, it swivels the eyepoint

around a fixed point in space. In the Button Window, it serves to select the actions available.

4.4 Class/Driver Construction

Only two additional classes had to be developed to support this application, other than

the driver itself. These were the button panel routines. Figure 22 illustrates the interaction of

the classes making up DBGen. Solid lines are inheritance lines. Hashed lines indicate message

passing. The items with an asterisk are GDMS modules.

4.4.1 ButtonNode/ButtonWindow Class The button panel used in DBGen was designed

for general use to allow inclusion into other SEL applications. It relies on other classes developed

by Simpson (19). The button panel is actually constructed using two separate classes, ButtonNode

and ButtonWindow. The ButtonNode class defines and manipulates an individual button on the

screen, while the ButtonWindow class manages the panel and the list of buttons. The combination

provides the user with 2-D, optionally shadowed buttons, with color toggle selection (See Figure

21).

60

m.Interactions Inheritance *GDMS Modules

Figure 22. Class interaction in the construction of DBGen.

61

A ButtonNode is a derived class of a doubly-linked ListNode. It holds the color, size, position

and title of a button as defined by the user. Methods give the user access to all its parameters.

A ButtonWindow is a derived class of both Simpson's (19) Window class, and a doubly-

linked List class. The latter manages the list of buttons in a way similar to the GenList class. This

code was developed early in the thesis cycle and has not been replaced with the generalized list

code.

A user defines the size of the window, and the contents of each button, indicating a unique

ID number, and the ButtonWindow class can set up and display them. A special method exists,

WhichButton, that returns the button ID of the particular button 'pressed'. The programmer must

provide the mouse coordinates relative to the ButtonWindow origin, for the proper button to be

returned. The driver can use the returned ID number to process the desired action.

4.4.2 Driver The driver brings together a myriad of pieces to create the end product. It

acts as a traffic light, directing messages from one class to the next. In addition to the classes already

described in this thesis, it uses Queued-Input, Text-Item, Text-Window, and STimer classes for a

variety of purposes. [See Simpson (19)]. The driver defines and initializes the entire application

before settling down to process user input.

This processing is structured in sections. It checks, in order, the graphical buttons, keyboard

input, the Fly-Through window, and each of the Placement windows; overhead, X-axis and Y-axis

views. The code is structured so as to minimize looping time during dynamic updates of the scene.

Manipulation of objects in one window are also updated in the other windows, if they are visible.

Figure 23 is a psuedo-code rendition of the driver program.

4.5 Summary

DBGen proved to be an excellent platform for testing GDMS functionality. It contained

most of the interfaces to the GDMS library that were required in the other SEL applications. It

demonstrated the usefulness of GDMS for developing rapid prototypes.

It also proved to be an excellent application in its own right. Synthetic environments could

be built and examined with relative ease. The next chapter shows some of the scenes generated

62

Parse Command Line;
Initialization {

Load Terrain, Master Object, and Placement files.
Construct Dynamic Menus;
Setup Window Formats;
initialize variables;
Queue Inputs (mouse, keys);

Do { //Main Loop
Process Command Buttons;
Process Key Inputs;

If (Fly_Window Active)
Do {

Process Right Mouse Button;
Process Middle Mouse Button;
Process Left Mouse Button;
if (Fly Mode Set) Process KeyBoard;
Update Screen;
Update Frame Rate;

}While (Flying OR Left Down OR Middle Down);

If (OverHead Window Active) {
Process Right Mouse Button;
Process Middle Mouse Button;
Process Left Mouse Button;
Update All Three Windows;

)

If (Side 1 Window Active)
Process Right Mouse Button;
Process Middle Mouse Button;
Process Left Mouse Button;

Update All Three Windows;
I

If (Side 2 Window Active) {
Process Right Mouse Button;
Process Middle Mouse Button;
Process Left Mouse Button;
Update All Three Windows;

}

} until (Command to Exit);

Figure 23. Psuedo-Code of DBGen driver.

63

with DBGen. The performance of the program is also examined.

64

V Results, Conclusions and Recommendations

Overall, this thesis effort accomplished what it set out to do. The Synthetic Environments

Laboratory, through the Graphical Database Management System (GDMS), now has a set of C++

classes for constructing applications related to mission planning, battle management and flight

simulation. GDMS provides the basic requirements for visualizing the environment, manipulating

objects in the environment and moving through the environment. Three applications have already

been implemented using GDMS; a flight simulator, a battle management system and the Database

Generation System (DBGen).

DBGen also achieved its desired goals. It was an excellent platform for testing the features

of the GDMS. As an application, it provided the means to generate synthetic environments for use

in other SEL applications.

The remaining sections provide some measures of system performance, for both GDMS and

DBGen, followed by a discussion of their strengths and weaknesses. Recommendations for future

work are also provided.

5.1 GDMS

5.1.1 Results The Graphical Database Management System is a complex set of software.

Many factors effect its overall throughput performance, such as the rendering options selected

(blending, resolution mode, coarse clipping), the number of polygons in an object, the number of

objects in a grid square, the number and size of grid squares in the database, the field of view,

etc. Test cases were run, using DBGen, to extract the performance gain/penalty for these GDMS

features.

Test runs were made diagonally across the grid, starting from the southwest comer and ending

at the northeast comer. The images covered approximately 40 percent of the pixels within the

fly-through window of DBGen. This window is 1048 pixels wide by 984 pixels high. Applications

using the helmet-mounted display, which requires a much smaller window (512 x 512), should

see performance increases over the results shown here due to fewer pixels drawn per frame. The

tables below show frame rates for both the Silicon Graphics Iris 4D/85GT and the 4D/31OGTX.

65

Table 2. Frame rate response of GDMS with various options set

36 sq miles - 6x6 grid
3 Levels of Detail

Low - 2 polygons/sq mile (72 Total)
Medium - 8 polygons/sq mile (288 Total)
High - 50 polygons/sq mile (1800 Total)

53x50 degree Field-of-View (X by Y)
Terrain ONLY

COARSE CLIPPING BLENDING RESOLUTION 4D/85GT 4D/310GTX
NO N/A LOW 20 24
NO N/A MEDIUM 15 20
NO N/A HIGH 7.5 10

YES N/A LOW 20-25 24-30
YES N/A MEDIUM 15-20 20-30
YES N/A HIGH 7.5-20 10-29

NO NO AUTO 17-19 20
YES NO AUTO 17-22 20-30

NO YES AUTO 12-15 14.5-17.5
YES YES AUTO 12-19 15-20

NOTE: With no polygons visible (all clipped), the maximum update
rates were:

4D/85GT - 30 hz
4D/31OGTX - 45 hz

66

Table 2 compares the performance of the rendering options in GDMS. The first group of

numbers provide a baseline for absolute throughput of the system in this configuration. The second

group shows the effects of the coarse clipping algorithm. Notice that the initial value for the range,

when all grids are in view, is the same as the baseline, indicating negligible cost for performing

the clipping algorithm. The benefits of coarse clipping are obvious from the increased frame

rate during the later part of the run. The third group measures the effects of 'AUTO' resolution

switching. In AUTO mode, the average frame rate falls near the MEDIUM value. GDMS trades

the HIGH resolution in the foreground for the low in the background. The effect is a higher

apparent throughput for the system. The final group shows the effect of resolution 'blending'

on performance. In blending mode, two resolutions are rendered simultaneously with separate

transparency factors (in this case pattern overlays) during a narrow transition band. Since the

polygon count varies depending on the distances to each object in the grid, the frame rate varies

rapidly during traversal of the environment. The total effect of blending is a general reduction

in frame rate. Having all the options on yields frame raies somewhere between the HIGH and

MEDIUM values.

This table can also give us a comparison between the hardware performance. The 4D/31OGTX

has a performance advantage over the 4D/85GT of approximately 20 to 30

Table 3 attempts to isolate the effect of the gri' I on performance. The total number of

polygons in the scene is constant for the two resolur iown. In the cases without clipping, the

grid size definitely has a detrimental effect. It is more apparent for LOW resolutions because a

larger percentage of the rendering time is spent walking the grid structure over rendering polygons.

With clipping on, however, the results are mixed. When a large number of grid squares are in the

field of view, as at the start of the run, the effect is the same as without clipping. But as the view

moves across the terrain, the higher grid count becomes favorable because the smaller squares can

be clipped away sooner.

Table 4 shows the effect of Field-of-View variations with coarse clipping on the frame

rate. Field-of-View (FOV) is the total angle observed in the X-direction as defined by the viewing

volume. As the FOV decreases, more of the grid will be clipped out, so an increase in frame

rate is expected. This is generally what occurred. The effects, however, were nf as significant

as anticipated. This was primarily due to the flight path over the terrain. By flyi..g diagonally,

67

Table 3. Frame rate response of GDMS varying Grid dimensions

120x120 sq miles
Levels of Detail

LOW - 800 polygons total
HI - 7200 polygons total

Blending - N/A
53x50 degree Field-of-View (X by Y)
Terrain ONLY

GRID RESOLUTION COARSE CLIPPING 4D/85GT 4D/310GTX D
4x4 LOW (50 poly/grid) NO 12.0 15.0

lOxlO LOW (8 poly/grid) NO 10.0 12.0

4x4 HIGH (450 poly/grid) NO 2.6 3.7
lOx10 HIGH (72 poly/grid) NO 2.5 3.5

4x4 LOW (50 poly/grid) YES 12.0-20.0 15.0-24.0
lOx10 LOW (8 poly/grid) YES 10.0-20.0 12.0-30.0

4x4 HIGH (450 poly/grid) YES 2.9- 8.6 4.0-10.0
1Ox10 HIGH (72 poly/grid) YES 3.0-13.0 4.0-15.0

Table 4. Frame rate response of GDMS varying Field-Of-View

10xlO grid - 120x120 sq miles
Levels of Detail

LOW - 8 polygons/grid (800 total)
HI - 72 polygons/grid (7200 total)

Coarse Clipping - ON
Blending - N/A
Terrain ONLY

I FIELD-OF-VIEW RESOLUTION 4D/85GT 4D/310GTX
90 LOW 9.0-20.0 12.0-30.0
53 LOW 10.0-20.0 12.0-26.0
30 LOW 11.0-23.0 13.0-30.0
10 LOW 13.0-25.0 15.0-30.0

90 HIGH 2.5-11.0 3.5-13.0
53 HIGH 3.0-12.0 4.0-15.0
30 HIGH 3.7-15.0 4.5-15.0
10 HIGH 5.0-13.0 6.0-15.0

68

directly through the grid square intersections, the largest number of squares remain visible at any

given time. This reduces the clipping effects. Additionally, as FOV is decreased, the image zooms

and a higher proportion of the window is covered with image, which decreases frame rate. Since

this is purely a function of the graphic hardware, it was not investigated in depth.

Table 5. Frame rate response of GDMS varying Grid dimensions

lxl Grid
53x50 degree Field-of-View (X by Y)
Coarse Clipping - OFF
Blending - N/A

I FRAME RATE THROUGHPUT
TOTAL POLYGONS 4D/85GT I 4D/3lOGTX 4D/85GT 4D/310GTX

558 17.0 23.0 9,486 12,838
1060 13.0 20.0 13,780 21,200
1915 7.5 12.0 14,362 22,980
2989 6.0 8.6 17,934 25,705
4040 4.6 7.0 18,584 28,280

To get a better measure of the polygonal throughput of the system, with minimal effect of

grid structure, a terrain grid with only one node was set up, and objects of varying polygon count

were added. The results are shown in Table 5. The overall throughput gets better with more

polygons. This is because a higher percentage of the work is being done by the hardware, as

opposed to the software. From these numbers, the 3 1OGTX is performing with about a 50

5.1.2 Strengths A strong point for GDMS is in its ability to manage and render blended,

multi- resolution, hierarchical objects, in both perspective and orthographic viewports. Figure

24 shows a hand object constructed hierarchically with the TEMPLATE and GEOM file formats

(See Section 3.5. 1). GDMS gives the programmer the flexibility to construct and manipulate any

kind of object based on polygons. It was designed with synthetic environments in mind, so is

particularly well suited to these type of applications.

Another strength is that GDMS relieves the programmer from most of the details of managing

the database, while giving the application user the flexibility to directly manipulate the objects in

69

Figure 24. Picture of HAND object constructed hierarchically with GDMS.

the database through ASCII files. The file formats were set up to minimize the support programs

needed to generate a database. Simple environments can even be constructed by hand.

A third strength is the object oriented design of GDMS. It allows programmers to extend the

classes through inheritance, or, if necessary, replace the internal algorithms with minimal impact

on the rest of the system.

In essence, GDMS provides everything but the control structures needed for coordinating

between the user and the database.

5.1.3 Weaknesses and Recommendations GDMS is not tie perfect system. It has its

limitations and plenty of areas for improvement.

One of these is that GDMS is limited to models with polygonal desciptions only. Although

other modeling primitives exist, like bi-cubic surfaces and textured "Ilipsoids, GDMS cannot

handle them. Incorporating these structures into GDMS would greatly increase its flexibility. The

GEOM file format already supports these two options, which could be used for various purposes

70

(clouds, spheres, etc), so a good portion of the work is already done.

The cost for these options, of course, will be reduced frame rates. The hardware is optimized

for rendering polygons, so processing other geometric primitives is bound to be less efficient, in

time, if not in the memory needed to hold the structures.

Another improvement to GDMS would be to implement texture mapping. GDMS does not

currently support the texture mapping option of the GEOM file format, even if the hardware would

support it. Hardware systems are now available which do real time texture mapping, so GDMS

should be updated for this capability. The realism of the images produced would be far better with

texture mapping, so the polygon count could be lowered accordingly, increasing frame rate.

17x17 Grid - 289 Grid squares

or i th polgon

4," f4

Current Clipping Algorithm Proposed C pping Algorithm

Must visit every node Compute viewing volume
to clip against viewing projection on XY-grid and
volume. (289 nodes) render only those nodes on

or in the polygon.
(86 nodes)

Fig,.te 25. Coarse clipping algorithm comparisons.

As seen from Table 3. the grid dimensions have a marked impact on frame rate when large

portions of the scene is visible. This is largely due to the algorithm used for coarse clipping.

Currently every node is visited to determine its visibility. This number goes up as the square of

71

the grid dimension. Soon, the cost in time of processing every node becomes too expensive. For a

solution, a modification to the algorithm could be implemented to quickly discard a large portion

of the grid nodes from ever being processed (See Figure 25). This would allow the user to define

large gaming areas with high grid square counts, subject to the limitations of memory, without a

substantial frame rate reduction. This benefit becomes even more pronounced for environments

with high object densities, since an even larger number of polygons are quickly rejected, along

with the overhead of walking through the structures. This approach is generally better than the

algorithm currently used, where every node must be rejected individually, but it does raise the

issue of memory constraints.

Testing of large grid sizes revealed a limitation on the total number of files which can be

loaded into memory at one time. The current hardware platforms are configured with only eight

megabytes of RAM. During initialization of the geometry files, the machine reaches a point where

excessive disk swapping takes place. This effectively limits the program to a maximum of about

400 GEOM files (20x20 grid) in memory at any one time. This varies somewhat depending on

the size of the files. To allow GDMS to handle large gaming areas with minimal performance

degradation, a mechanism is needed to intelligently swap the terrain grids in and out of memory

as they come in and out of the visible area, overriding the automatic virtual memory feature of Irix

(SGI Unix).

Throughput is always a weakness in rendering software. One can never have too fast a frame

rate. Although the current rate is acceptable in some regimes, it does bog down at times. The

bottlenecks must be found and corrected to get the best performance from GDMS. A profiler, if

one should ever becomes available for the Iris workstations, is an excellent way to find these, and

should be purchased.

For the system as is, one known way to increase the overall throughput of the rendering

pipeline is to replace the recursive procedures in the Placement, Template, PhigsList and GenList

classes, with iterative procedures. Recursion is generally slower than iterative procedures, and it is

used extensively in the rendering methods to walk through the hierarchical structure. Restructuring

these methods is bound to improve throughput.

72

5.2 DBGen

5.2.1 Results DBGen was used to as the platform for measuring the performance of

GDMS. The frame rates quoted above were generated during simulated flight through DBGen's

Fly-Through window.

AI

Figure 26. Synthetic environment created with DBGen (Grand Canyon area).

As an application, several environments were created from within DBGen for testing and

demonstration purposes. The following figures show various databases built with the program.

Figure 26 shows an area around the Grand Canyon. Figure 27 shows the Death Valley

area being populated with objects in the Tri-Window. Figure 28 is shows the front range near the

Denver area.

5.2.2 Strengths The Database Generation System has proven to be a useful addition to the

Synthetic Environments Laboratory. Its Tri-Window object placement system allows for intuitive

placement of objects on terrain, while the fly-through window provides valuable instantaneous

feedback on the real-time performance of the constructed database. The ease of switching between

73

Figure 27. Synthetic environment created with DBGen (Death Valley area).

the two formats increases the productivity of the user and his confidence in the end product. The

overall interface seems well suited to the intended task. The control the user is given over the

program environment is very useful in the development of terrain databases. It is not perfect,

though.

5.2.3 Weaknesses and Recommendations Although DBGen is good for what it does,

several features are still missing.

DBGen cannot dynamically change an object's polygon colors, attributes, vertex positions

or normals. A built in modeling capability to directly change these values would be quite useful.

Additionally, an interface to Duckett's (5) terrain generation system would also be useful. A user

could then generate the terrain files interactively, altering the grid spacing and polygon resolution

as needed to optimize throughput.

Another area for improvement is in the information presented in the Status Window of

DBGen. This is sufficient for controlling the program, but more is needed for a thorough analysis

74

Figure 28. Synthetic environment created with DBGen (Denver Area area).

of a synthetic environment. Information global to the entire database, as well as the current scene,

would be useful. In working with the system, the polygon counts for each object to be placed

in the database is needed. Similarly, the polygon count for each grid, and for the entire database

would be useful. Other information needed is the number and size of the grid squares, how many

polygons in the terrain, the number of objects placed on the terrain, how many objects per grid,

etc. Unfortunately, the space in the window is limited, so pop up boxes might be used to display

information upon request. Other useful parameters would be dynamic information on the number

of grid squares rendered or clipped, a measure on the number of polygons in any given scene, and

the resolution switching distances for objects and terrain.

Two additional editing features would also be useful. The first is an automatic alti-

tude/orientation mode which computes the initial placement on the terrain, regardless of the

terrain's slope. The second is an area fill mode in which objects can be placed automatically at

some specified density. The latter feature requires the former to be viable.

The next stage in the development of this application would be to extend the functionality

75

of DBGen into a mission planning or battle management arena. A thorough analysis of the

requirements in such a system must be accomplished first. Any additional features required could

then be implemented in piecemeal, using DBGen as the base. In this way, a application prototype

could be developed for the Synthetic Environments Laboratory in a short time.

76

Appendix A. File Formats

In designing the database system, four separate data types emerged for the storage of a

synthetic environment to disk. The first was the actual geometric descriptions of the objects

themselves. The second was the construction of multiple objects into more complex objects. The

third identified object file descriptions with object types. The fourth defined each object instance

and placed it in world coordinates, while also allowing for hierarchical object construction.

The definitions of how these functions are stored is contained in the GEOM, TEMPLATE,

LINK and PLACEMENT file formats, respectively. The GEOM format is described in (6). The

others were developed specifically for this effort and are described in the sections below.

All the formats are ASCII based to allow for convenient editing and readability. Individual

lines within files are limited to an arbitrary length of 1024 characters. A new line is started after

-each 'newline' character. When specified, either '/*' or 'VI' can be used to designate a comment

line, provided they are the first none blank characters on the line. Blank lines are also permitted.

Preprocessor commands are not supported.

The ASCII format was used for two reasons. First, the GEOM format was already ASCII

based, and consistency in format eases understanding. Second, the conversions from disk to

memory are designed as a preprocessing step, so file retrieval times were only a minor consideration.

A.I TEMPLATE File

A TEMPLATE file is a special ASCII file used for creating Templates of complex objects

out of several standard GEOM files. The format provides the information needed by the Template

class to generate this information. In this format, comments or blank lines are permitted only after

the first two lines. By convention, TEMPLATE files should have a 'desc' extension.

An excerpt from the TEMPLATE file used to construct a HAND object is shown if Figure

29. The file format is as follows:

LINE 1: Comment Line. Can be anything up to 1024 characters. This

line must exist. It can not be blank. This line is normally

used for file identification.

77

Table 6. TEMPLATE file format

LINE J KEYWORDS COMMENTS

1 None Up to 1024 characters
2 files <# of GEOM files> File and object component

components <# of components> counts
3+ file <filename> GEOM filename
4+ component <n> Beware circular references

parent <n>
file <n> References 3.
[begin] Transformations bracketed by
[end] 'begin' and 'end'. Can extend
[translate <> 4f> <f>] beyond one line.
[rotx <>] Pre-multiplication order.
[roty -f>]
[rotz <>]
[scale -d> <> <d>]

NOTE: Comments allowed after 2nd line.

description file for a dataglove
files 2 components 11

file palm.geom
file ffigerkinrt.geom

component 1 parent 0 file 1 begin translate 0.0 0.0 0.0 end

II Thumb
component 2 parent I file 2 begin translate -0.25 -0.30 0.1 roty -25.0 rox 30.0 scale 0.25 0.25 0.24 end
component 3 parent 2 file 2 begin translate 1.0 0.0 0.0 rotx 10.0
scale 0.7 0.7 0.8 end

/Index finger
component 4 parent 1 file 2 begin translate 0.00 -0.19 0.0 roty 3.0

scale 0.25 0.24 0.24 end
component 5 parent 4 file 2 begin translate 1.0 0.0 0.0 roty 9.0
scale 0.8 0.7 0.7 end

//Middle finger

Figure 29. Excerpt from "hand.desc", a TEMPLATE file.

78

LINE 2: Must contain:

Keyword "files" followed by a count of the GEOM file names to be

used in the Template. It is the users responsibility to insure

the number of files actually used matches this number.

Keyword "components" followed by a count of the total number of

components used in the object. For instance, a hand made up of

four fingers and a thumb, each having two parts, plus the palm

makes eleven components. This number must match the actual

components defined later in the file.

LINE 3 - \# of files: Must contain:

Keyword "file" followed by a pathname to a geom file. This

should include the full path to insure files could be read from

any startup directory. List as many files as specified in LINE 2.

REMAINDER: Must contain:

Keyword "component" followed by an integer ID number between 1

and the number of "components" specified. Each component must

have a unique ID number. The program warns the user if duplicate

ID numbers are used. Ordering is unimportant.

Keyword "parent" followed by the component ID number of the parent

component. Specifying a "parent 0" makes coordinate

transformations relative to the local coordinate frame. Local

coordinate frames should be modeled with Z being up to align with

GDMS applications. Circular references car be constructed, but

will result in an infinite loop if used. Users are responsible

for insuring the links of parent ID's do not circle back to the

original component.

79

Keyword "file" followed by the GEOM file number to use. "file 1"

specifies the first pathname listed starting from LINE 3 above.

The remaining entries on this line position and orient the

components relative to the specified parent. The keywords "begin"

and "end" must bracket all these commands. Component entries can

extend for as many lines as needed. The optional entries include:

"translate" followed by three floats (X,Y,Z).

"scale" followed by three floats (X,Y,Z).

"rotx" followed by float to specify angle about X in degrees.

"roty" followed by float to specify angle about Y in degrees.

"rotz" followed by float to specify angle about Z in degrees.

All transformations are constructed by pre-multiplication. The

user should arrange calls in opposite order from desired execution.

A.2 LINK File

A LINK file is a special ASCII file used for creating the links between object types and

appropriate objL=t descriptions. The format provides the information needed by the Translator

class to generate this information. In a LINK file, entries can not extend beyond one line (1024

chars). Comments or blank lines are permitted, but only after the first line. For convention, LINK

files should have an 'Ink' extension.

An example from a LINK file is shown in Figure 30. The file format is as follows:

LINE 1: Comment Line. Can be anything up to 1024 characters. This

line must exist. It must not be blank.

80

Table 7. LINK file format

LINE I KEYWORDS COMMENTS

1 None Up to 1024 characters
2+ <CATEGORY> [TERRAIN] [RADIOTWR]

[WATERTWRI [HANGAR]
[AIRCRAFT] [BUILDING]
[SAM] [AAGUN] [MISSILE]
[USERDEF]

maxtypes <n> Type count in file.
3+ <CATEGORY> Same as above.

type <n>
level <1-3>
[name] <shortname> Last defined resolution wins.
[gpath <GEOM filename>] Either gpath or dpath required.
[dpath <TEMPLATE filename>] , _ _ _

NOTE: Comments allowed after Ist line.

This is a test file for the linking control algorithms
AAGUN maxtypes 1
USERDEF maxtypes 2

USERDEF type I level I name Hand dpath hand.desc
AAGUN type 1 level 1 name AAA1 gpath gun.geom
AAGUN type 1 level 2 dpath gun.desc
USERDEF type 2 level 1 naime Cube gpath cube.geom

Figure 30. Example of simple LINK file.

81

LINE 2-?: The next block of entries define the maximum number of each

category of object allowed in the database. Object categories

can be any of the following:

(TERRAIN, RADIOTWR, WATERTWR, HANGAR, SAM, AAGUN,

AIRCRAFT, VEHICLE, BUILDING, MISSILE, and USERDEF).

An entry must start off with the object category (all capital

letters), followed by the keyword "maxtypes%, followed by the

maximum number of object types to allocate for the given category.

The program will not allow object types designated with ID numbers

above this value. Each type designation can hold up to three

resolutions.

LINE ?-eof: The final block of entries specify a short name and a path

name for each object category, type number, and level of

resolution. Entries must begin with the object category, listed

above. The remaining keywords are:

Keyword *type* followed by an integer ID number (mandatory).

Values above the "maxtypes" designated will be rejected, with a

warning given.

Keyword *level" followed by a resolution index (mandatory). The

index is an integer corresponding to resolution values as follows:

1 = LOW, 2 = MEDIUM, 3 = HIGH.

Polygon counts within resolutions are at the descretion of the

user. The user must specify at least one resolution entry for

an object to be defined. Multiple resolution entries are entered

in separate lines. The user must insure that separate

description files intended for a single object are designated

with different resolution indices. If only two resolutions are

entered for an object, they should be designated with consecutive

resolutions for blending purposes. I recommend using LOW and MED

for efficiency, if less than three resolutions are defined.

Other values are rejected with a warning given.

82

Keyword "name" followed by a simple name for the object type

(Optional). This should be specified for only one of an object's

resolutions. It is a descriptive name to aid in object

identification.

Keyword "gpath" or "dpath" followed by the full path name to

the appropriate type image file. "gpath" indicates a GEOM file.

"dpath" indicates a TEMPLATE file. Users must insure the

file type matches the file designation. By convention, GEOM

files have "geom" extensions, and TEMPLATE files have "desc"

extensions, but this is not required. It is the users

responsibility to insure the pathnames specified correspond

to actual files.

A.3 PLACEMENT File

A PLACEMENT file is a special ASCII file used for creating instances of object types and

placing them in a synthetic environment database, structured on a grid. The grid dimensions are

specified in world coordinates. Objects placed outside of the grid are attached to the nearest node

in the grid. The format provides the information needed by the TGrid and Placement classes to

generate this information. It is also used in Duckett's Terrain Generation System (5). Comments

or blank lines are permitted only after the second line. By convention, PLACEMENT files should

have a 'dbs' extension.

An example of a terrain PLACEMENT file and an object PLACEMENT file are shown in

Figures 31 and 32.

The file format is as follows:

LINE 1: Comment Line. Can be anything up to 1024 characters. This

line must exist. It must not be blank.

LINE 2: Grid Definition. This line contains all the information

needed to fully specify a grid in world coordinates. The 'Z'

83

Table 8. PLACEMENT file format
LINE I KEYWORDS COMMENTS

I None Up to 1024 characters
2 [originLat <f> [N][S]I For Terrain Builder Program

[originLong 4> [W][E]
minx <n> Grid dimensions (longs).
miny <n>
maxx <n>
maxy <n>
gsize <n> Grid square width

3+ create Creates Phigs node
<CATEGORY> [TERRAIN] [RADIOTWR]

[WATERTWR] [HANGAR]
[AIRCRAFT] [BUILDIG]
[SAM] [AAGUN] [MISSILE]
[USERDEF]

type <n> Reference to definition in L!rNK.
[begin] Transformations bracketed by
[end] 'begin' and 'end'. Can extend
[translate d> 4> 4>] beyond one line.
[rotx 4>] Pre-multiplication order.
[roty d>]
[rotz d>4]
[scale <f> <d> d>
[matrix 4<f> <1> 4> 4> <f> Upper 3x3 - Left->Right,
<f> d> <f>] Top->Bottom.
[low2med 4> <f>] IN, OUT switch distances
[med2high 4f> 4>]
[create] Child construction allowed inside
[close] the definition of another object.
close

NOTE: Comments allowed after 2nd line.

84

terrain\.builder
originLat 36.0000 N onginLong 118.0000W minx 0 miny 0 maxx 11160 maxy 11160 gsize 1860

create TERRAIN type I begin translate 0 0 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 2 begin translate 01860 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 3 begn translate 0 3720 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 4 begin translate 0 5580 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 5 begin translate 0 7440 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 6 begin translate 0 9300 0 scale 1860.000000 1860.000000 1.000000 endose
create TERRAIN type 7 begin translate 1860 0 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 8 begin translate 1860 1860 0 scale 1860.000000 1860.000000 1.000000 end close
create TERRAIN type 9 begin translate 1860 3720 0 scale 1860.000000 1860.000000 1.000000 end close

Figure 3 1. Excerpt from PLACEMENT file (terrain.dbs).

This is a test file for Grid Class (Placement)
minx -1000 miny -1000 maxx 1000 maxy 1000 gsize 200

create AAGUN type 1 close
create AAGUN type 1 begin translate -200 -200 0 rotx 20.0 end close
create AAGUN type 1 begin translate -2000 -2000 0 end

create USERDEF type 1 begin translate 20 20 20 scale 1.2 1.2 1.2 end close
close
create USERDEF type 1 begin translate -37.00 -204.00 0.00

matrix 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 end
close
create AAGUN type 1 begin translate -128.00 -86.00 0.00

matrix 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 end
close

Figure 32. Excerpt from PLACEMENT file (test.dbs).

85

axis is assumed to be up. Entries can not extend to next line.

Legal entries for this line include:

Keyword *minx" followed by a long integer representing the

farthest extent of the grid in the '-X' direction (Westerly).

Keyword "maxx" followed by a long integer representing the

farthest extent of the grid in the '+X' direction (Easterly).

Keyword "miny" followed by a long integer representing the

farthest extent of the grid in the '-Y' direction (Southerly).

Keyword "maxy" followed by a long integer representing the

farthest extent of the grid in the '+Y' direction (Northerly).

Keyword "gsize" followed by an integer specifying the

incremental length of each grid square over the entire area.

NOTE: Invalid entries from above will cause the system to

abort the load of a PLACEMENT file with an accompanying message.

The following entries are used only in the Terrain Generation

System for placing multiple terrain blocks appropriately.

Keyword "originLat" followed by a float representing latitude

in degrees and character of 'N' or 'S'.

Keyword "originLong" followed by a float representing longitude

in degrees and character of 'E' or 'W'.

LINE 3-eof: The remaining lines are used to instantiate objects and

place them in the database. The format follows a PHIGS-like

structure by allowing hierarchical constructions. Objects are

identified by category and ID number. The user is responsible

86

for insuring the object type is included in the active LINK file.

An error message results if the object can not be identified.

An object entry definition creates an object instance, positions

and orients it, sets resolution switching parameter, and then

closes it. Hierarchically structured objects can be constructed

by creating a new object before closing the old. The user must

insure all open objects are closed properly. Object

transformations are done between two keywords, "begin" and "end".

Entries can extend beyond one line. The keywords for this

block are:

Keyword "create" followed by one of the object categories

described in the LINK format.

.Keyword "type" followed by the integer ID number corresponding tc

the object type defined in the LINK format.

Keyword "begin" to initiate transformation processing (Optional).

Keyword "end" to terminate transformation processing. Required

if "begin" is used. Transformation must be concluded before

creating any new child objects.

Keywords "begin" and "end" are must bracket all object

manipulation commands. The optional entries include:

"translate" followed by three floats (X,Y,Z).

"scale" followed by three floats (X,Y,Z).

"rotx" followed by a float to specify angle about X in degrees.

"roty" followed by a float to specify angle about Y in degrees.

87

"rotz" followed by a float to specify angle about Z in degrees.

"matrix* followed by nine floats specifying the upper 3x3

matrix of the 4x4 modeling matrix. Entries are listed in

left to right, top to bottom order.

"low2med" followed by two floats. The first specifies the

aistance to switch from LOW to MEDIUM, the second from

MEDIUM to LOW.

"med2high" followed by two floats. The first specifies the

distance to switch from MEDIUM to HIGH, the second from

HIGH to MEDIUM.

Keyword "close" to match the "create" and terminate object

definition.

All transformations above are constructed by pre-

multiplication. Users should arrange calls in opposite order

from desired execution. For child objects, transformations are

relative to the parent object instead of the world coordinate

system.

88

Appendix B. DBGen USER's MANUAL

The Database Generation System (DBGen) is a tool for populating polygonal terrain models

with polygonal object models to form synthetic environments. The following section describes

the command line interface, the window layout, mouse interface, and keyboard commands.

B. I Command Line Interface

Parameters can be passed into the program to load terrain files, object link files, and object

placement files (See Appendix A for file formats). The format for the command line is shown

below.

dbgen [-h/?] [-t <terrain>] [-m <object definitions>]

[-d <object placements>]

where: -h/? option - prints the usage line above

<terrain> - pathname to terrain 'ink' \& 'dbs' files

<object definitions> - pathname to master 'ink' file of objects

<object placement> - pathname to object 'dbs' file

NOTE: All pathnames are specified without extensions.

Any or all of these parameters can be passed into the program. Options exist within the

program to change these at any time.

B.2 Window Layout

The screen is broken down into three areas, a command button area, a status area, and a

viewing/manipulation area. The command Button window provides access to all the commands

and modes available in DBGen. The Status window displays pertinent information on the state of

the program. The viewing/manipulation windows are where the work is done.

B.2.1 Button Window The Button window consist of a series of graphical buttons used to

activate commands, pull down menus or change modes in the program. There are four sections of

89

buttons, file commands, editing modes, window modes, and setup commands. Figure 33 shows

the relationship between the buttons and the pull down menu. The following paragraphs will

explain what each function does.

Clear All Aircraft Load TerrainHagr *

Toadl RsolutLink Buending Noo

BTOSa Load Placement Obet o WaterTowerm_BTOS Save Placement ITerrain a* RadioTowei

FileSave Placement As Master Li
Save Comn site Other p s erel

i.e opin aes foll ows:
Aircraft as fomeoy (euest

Cofrato efor Bulding)I

de n - WaterTowers Tyn f2oi
ailen t RadioTowersio T p Type 3o

Aped .nad d.'t h nm e. Aterai flsomyb

tLow

Zca m/Pan esTerrin Medium

-lrri'd'_ Toggle Info forys bo eding

St .Tole Axes Display-%.Toggle Cowrse Clipping _ Mrnn
ExtToggle Resolution M Blending INoon I

Toggle Grid Lines _ A~jfterNoonj
Reset ViewF wigh

Figure 33. Button window with cascading menu relationships.

B.2.1.1 File Commnands The 'FILE ...' button pops up a menu related to the files

DBGen uses on disk. The options are as follows:

'Clear All' - purges current database from memory. (Requests

Confirmation before proceeding)

'Load Terrain' - Requests a single pathname for terrain files.

The filename must have no extension. The program automatically

appends ' .ink' and ' .dbs' to the name given. Terrain files may be

created through the Terrain Generation System (See Duckett [14]).

O1 terrain information is removed from memory before loading the

90

new files.

'Load Master Link' - Requests pathname for master object file.

The filename must have no extension. The program automatically

appends '.lnk' to the name given. The master object file must be

constructed by hand (See Appendix A for LINK fileformat). Old

object description information is removed from memory before loading

the new file.

'Load Placement' - Requests pathname for object placement file.

The filename must have no extension. The program automatically

appends '.dbs' to the name given. The object file is generated by

DBGen through the 'Save Placement' command. Old placement objects

are removed from memory before loading the new file.

'Save Placement' - Saves the current state of the database to the

filename loaded with the '-d' option of the command line or the

'Load Placement' command. If thefilename has not been provided, the

program will ask for one.

'Save Placement As' - Saves the current state of the database to the

filename specified by the user. CAUTION - The program will

overwrite a file of the same name on disk without any warning.

'Edit Files' - This option calls up another menu for file selection.

Once the file has been selected, a shell to 'vi' is invoked. You

must exit the shell to continue work in the program. The program

is suspended until this occurs.

'Objects' - Pops up a series of dynamically constructed menus based

on the object descriptions loaded in the master link file. The

user must select the object category, type ID, and level of

resolution to get access to a particular file for editing or

91

viewing (See Figure ~\ref{figBl}). Be advised, the normal UNIX

permissions on files apply.

'Terrain' - Pops up a menu to allow you to select either the terrain

LINK or PLACEMENT file for editing. This uses the names loaded

from the command line or the 'Load Terrain' option above.

'Master Link File' - Invokes 'vi' with the name of the master object

file loaded from the command line or the 'Load Master Link'

option above.

'Other' - This option invokes 'vi' after requesting a filename.

Extensions must beprovided here.

B.2.1.2 Picking Modes The Picking Modes determine how objects are selected in

the overhead view of the TRI-WINDOW format.

'PICK AREA'

When the mode is active in this window, objects in the database are selected from an area

swept out by the mouse. One comer of the box is anchored by pressing in the left mouse button.

The opposite comer is specified upon release. Objects within the region formed by the two comers

are selected. Pick Area and Pick Item are mutually exclusive modes.

'PICK ITEM'

When the mode is active in this window, objects in the database are selected/deselected

based upon their X-Y distance from the position specified. Only the specified grid square and

the eight surrounding squares are searched for the 'nearest' object. Pick Item and Pick Area are

mutually exclusive modes.

B.2.1.3 Editing Modes Editing buttons toggle MODES which specify how objects

are manipulated within the Tri-Window format. The tables in Section B.3 give specifics for

each window and each mode. In addition to setting the mode, these buttons can also activate or

deactivate the list, depending on its state. If items are selected on the list (in RED), toggling an

92

editing mode will automatically activate them (in GREEN) for manipulation. Conversely, if the

list is active, selecting the same mode button will return the list to the selection state. Changing

modes with active objects dces not alter their state. The editing buttons follow:

'MOVE'

Objects activated with this mode set are moved about in the plane of the active window.

Movement follows the mouse pointer movement.

'COPY'

This feature requires some elaboration. When a user activates the list with copy mode set,

a new list of objects are created, offset slightly, and activated. The original list is returned to its

normal state in the database. The user must drag the new objects to a new location, or overlapping

objects will occur, reducing frame rate. Manipulation works identically to the move mode. In

order to make additional copies, or add objects to the selection list, reselect the 'COPY' button,

returning the active objects to the selection state, and repeat the process.

'DELETE'

Objects are deleted from the database when activated with this mode set. Multiple objects

can be deleted individually, or selected as a group and deleted all together. Caution must be used

when selecting this mode from the panel, because any items on the list will be immediately deleted.

'ORIENT'

Objects activated with this mode set are rotated about the local coordinate axis corresponding

to the View Plane Normal of the active window. Additionally, this mode allows fine adjustments of

the object's altitude. Movement follows the mouse pointer movement; horizontal rotates, vertical

elevates. The ARROW, and PAGE keys also adjust altitude, allowing larger increments.

rage Up - Adds 1000 units

Page Down - Subtracts 1000 units

Up Arrow - Adds 10 units

Dn Arrow - Subtracts 10 units

Shift-Page Up - Adds 100 units

Shift-Page Down - Subtracts 100 units

Shift-Up Arrow - Adds 1 units

93

Shift-Dn Arrow - Subtracts 1 units

'SCALE'

Objects activated with this mode set are scaled symmetrically about their center. Multiple

objects are scaled together from the group center. Negative scaling is possible, causing mirroring

of the objects.

'ADD'

Selecting 'ADD' automatically deselect and reinsert all objects on the list, and pops up a

menu of available object categories to choose from. This menu is constructed dynamically from

the master LINK file specified at startup, or from the 'FILE ...' menu. Each entry calls up the set of

objects available for that category. Selecting one of these object types activates the 'ADD' mode

for that object description, and initializes the global rotation and scale parameters. (See Section

B.3). Controls are the same as for 'ORIENT' mode.

B.2.1.4 Window Modes Three buttons exist for changing modes related to the win-

dow formats, 'ZOOM/PAN', 'TRI-WINDOW', and 'FLY-WINDOW'.

'ZOOM/PAN'

This button toggles the effect of the middle mouse button on the viewing volumes in each

window. The mode is indicated by the title on the button, either 'ZOOM' or 'PAN'.

'TRI-WINDOW'

This button pops the three window format to the front of the screen to allow for database

editing. TRI-WINDOW and FLY-WINDOW are mutually exclusive modes.

'FLY-WINDOW'

This button pops the fly-through window to the front of the screen to allow interactive fly

through capability. The viewpoint is initially set looking at the last object placed in the database.

TRI-WINDOW and FLY-WINDOW are mutually exclusive modes.

B.2.1.5 Setup Commands The 'SETTINGS ...' button pops up a menu controlling

the rendering options in the program. The settings are glohal to every viewing window. The

options are as follows:

94

'Resolution' - This selection calls up another menu allowing the user

tc set the level of detail to be rendered. Five modes exits. The

first is 'Auto', where the program automatically selects the

resolution to render based the object's distance from the eyepoint.

The next three select Low, Medium, or High levels of detail only.

The final setting is for Bounding Boxes, which renders the bounding

volumes instead of the objects.

'Time of Day' - This calls up a menu to select four general time of day

options for the lighting model, Morning, Noon, Afternoon, and

Twilight.

'Toggle Info Display' - This toggles the textual information in the

lower left corner of each viewing window on or off.

'Toggle Axes Display' - This toggles the display of the axes on or off.

The information displayed for axes origin is also toggled.

'Toggle Coarse Clipping' - This toggles coarse clipping on and off for

rendering of the database. The 'C' key also does this.

'Toggle Resolution Blena ng' - This toggles the blending option between

levels of detail. The 'B' key also does this.

'Toggle Grid Display' - This toggles the display of grid lines on the

synthetic environment. The 'G' key also does this.

'Reset Views' - This resets the viewing volume and eyepoint of each

wind!ow to their initial values.

95

B.2.2 Status Window The Status Window provides information pertinent to the state of

the program. Most of the entries are self explanatory. The following is a short description of the

potentially confusing entries:

The 'Add Object' entries indicate the current mode for adding objects to the database. If

'NILL' is indicated, no object is selected.

The 'Init Scale', 'lnit Rot X', 'Y', and 'Z' entries relate what initial values are applied

to objects first added to the database. These values are obtained directly from the object being

manipulated when in Add mode.

The 'Total in Grid' entry indicates how many objects are contained in the database, not

counting those objects selected. This number includes the terrain objects (i.e. - a 6x6 terrain grid

has a minimum of 36 objects indicated).

The 'Fly Velocity' entry is a relative parameter indicating how many units are traveled per

frame when in fly mode. The "actual" speed over the terrain is totally dependent on frame rate

and the units defined in the terrain grid. This velocity can be varied using 'A' and 'S' keys. 'A'

decrenents velocity by one unit per frame. 'S' increments by one unit per frame.

B.2.3 Viewing/Manipulation Windows The viewing area serves two different purposes,

depending on the mode set from the button window. The first is to allow the user to place and

orient objects in the environment. The second is to allow the user to see how the environment

looks from a moving platform. Each of these functions use its own window format. (See Figure

34 for w indow formats.)

The first format, or placement format, uses three separate windows, one for each coordinate

axis. The overhead view (aligned with the z-axis) uses a wide area orthographic projection for

placing or retrieving objects on the terrain. The view centerline remains fixed during object

insertion. This is the only window that can be used for selecting or placing objects. The two

side views (looking down the x and y-axes, respectively), are perspective projections to help with

object orientation in three dimensions. These views are slaved to the object being manipulated, so

that it always remains fixed in the center of the window. Coordinate axes are displayed in each

96

Placement Format Fly-Through Format

B B

Overhead view U u
t

(Orthographic) t
(Aligned with z-axis) 0

n Fly-Through view

S S

Side I Side 2 a

(On x-axis) (On y-axis) '_ __ _ T
SMd. 2 (3-M) -. I (y-aM)

Figure 34. Window formats in DBGen.

97

window for reference. Red is used for the X, green for the Y, and blue for the Z axis. The XYZ

axes correspond to the RGB colors for a memory aid.

The second format, or fly-through format, uses a single window occupying the same space

as the three placement windows. It uses a perspective projection to simulate a view from a cockpit.

The user can select a fly mode or look-around mode for observing the environment. A simple

reference guide is used to help with attitude orientation. The coordinate axes are projected out in

front of the 'plane', so that the origin is always centered in the window. The blue colored axis (Z),

always points to the sky.

The specifics on how the interaction takes place in each of these windows is covered in the

mouse interface section (B.3)

B.3 Mouse Interface

The mouse is the primary means of user input in DBGen. Each button on the mouse controls

a general type of action. The particular window and the modes selected determine the specific

actions that are accomplished.

B.3.1 Middle Mouse Button

The middle mouse button manipulates viewing volumes of windows in the database inter-

action area. The user clicks and holds the button down while in the desired window, then moves

the mouse pointer to zoom, or pan the view, depending on the mode set in the button window.

In ZOOM mode, moving left zooms out and moving right zooms in. This changes the view

volume's u-v dimensions to give both the orthographic and perspective views a zoom capability.

Moving the mouse down and up moves the eyepoint in and out, respectively, along the view plane

normal (VPN). This effects only the resolution switching of objects in the overhead, orthographic

window, though it also zooms the views in the perspective windows.

In PAN mode, the movement of the mouse, with the button held down, appears to drag the

object images in the direction of movement, relative to the plane of the window. In actuality, the

eyepoint is moving opposite to the apparent object movement.

98

B.3.1 Right Mouse Button The right mouse button is used to toggle states. This button

effects the Placement windows, the Fly-through window, and the Button window.

In the Placement windows, it toggles the objects on the selection list to active, or from active

to normal. If an object list is in the selection state (colored red), a click of the right button will

change their status to active (green) for manipulation. A subsequent click will switch to a normal

status, reinserting the objects in the database, and clearing the list. If the list is already clear, the

right mouse button has no effect.

In the Fly-Through window, the right mouse button toggles the fly mode, starting or stopping

the flight through the synthetic environment. The mode set determines the actions that will be

accomplished with the left mouse button. Moving the mouse pointer outside the window area will

turn off the fly mode also.

For the Button window, the right mouse button activates the particular graphical button under

the cursor. Graphical buttons are used to toggle modes, pull down menus, or execute commands.

Entries in pull-down menus are selected by releasing right mouse button on desired selection.

B.3.2 LeftMouse Button The left mouse button performs different actions in each window,

depending on the modes selected. Modes are set through the Button window and with the right

mouse button.

Table 9. Left mouse effects in Overhead window.

MODE ACTION COMMENT
MOVE [JR Drags group left/right wrt view (-+X-axis)

U/D Drags group up/down wrt view (+-Y-axis)
COPY Same as MOVE

DELETE N/A Objects in list are deleted upon activation
ORIENT [JR rotates group about Z-axis

U/D moves group up/down relative to terrain
SCALE [JR N/A

U/D scales group up/down uniformly in x, y & z
scaling group to negative values will mirror image

ADD Same as ORIENT

99

B.3.2.1 Overhead Window In the overhead window of the Placement format, the

left mouse button performs three separate functions. First, if the list is either empty or in selection

mode (red), and the program is not set to insert objects (ADD mode), left mouse clicks will select

or deselect objects in the database. The program looks for the nearest object to the mouse pointer,

in the grid square selected and in eight surrounding grid squares.

Second, if the program is in ADD mode, a click will insert an object at the point indicated,

and activate the object for modification. Items on the list at the time of mode selection will be

reinserted in the database.

Third, if the list is activated (green), clicking and holding the left button down will manipulate

the object on the list as applicable to the window and the editing mode selected. See Table 9.

B.3.2.2 Side I Window (On x-axis) In side window 1, the left mouse button serves

to manipulate objects with respect to the X-axis. No selection or insertion capability exists. See

Table 10 for mode actions.

Table 10. Left mouse effects in Side I window.

MODE ACTION COMMENT

MOVE LR Drags group left/right wrt view (-+Y-axis)
U/D Drags group up/down wrt view (+-Z-axis)

COPY Same as MOVE
DELETE N/A Objects in list are deleted upon activation
ORIENT L/R rotates group about X-axis

U/D moves group up/down relative to terrain
SCALE UR N/A

U/D scales group up/down uniformly in x, y & z
scaling group to negative values will mirror image

ADD Same as ORIENT

B.3.2.3 Side 2 Window (On y-axis) In side window 2, the left mouse button serves

to manipulate objects with respect to the Y-axis. No selection or insertion capability exists. See

Table 11 for mode actions.

In the Fly-Through window, the left mouse button serves two functions.

100

Table 11. Left mouse effects in Side 2 window.

MODE ACTION COMMENT
MOVE hR Drags group left/right wrt view (+-X-axis)

U/D Drags group up/down wrt view (+-Z-axis)
COPY Same as MOVE

DELETE N/A Objects in list are deleted upon activation
ORIENT [R rotates group about Y-axis

U/D moves group up/down relative to terrain
SCALE LR N/A

U/D scales group up/down uniformly in x, y & z
scaling group to negative values will mirror image

ADD Same as ORIENT

In one mode, as the user "flys" through the environment, the left mouse button controls the

pitch and roll rates of a simulated 'aircraft' in flight. Pressing and holding the left button enters roll

and pitch rate commands based on the distance from the center reference point. Left of center rolls

the 'plane' left, while right of center rolls to the right. Similarly, above the center point pitches the

Iplane' down, executing a pushover, while below center pulls the 'plane' up. The further from the

center, the faster the rate. These commands are similar to the inputs used in the Silicon Graphics

'flight' program.

In the second mode, when flight is turned off, the left button allows the user to swivel around

in his position. Left movement swivels the view volume to the left and right movement swivels

the volume to the right. Up movement swivels the volume up and down movement swivels the

volume down. Flight will resume along the new line of sight when activated.

101

Appendix C. Uni Manual Page

dbgen(1) USER COMMANDS dbgen(l)

NAME

dbgen - places objects in synthetic environments interactively.

SYNOPSIS

dbgen [-t terrainfile] [-m masterobjectfile] [-d placementfile

-h] [-?]

DESCRIPTION

The DataBase Generation System (DBGen) is an application of the

Graphical Database Management System (GDMS). It is used for

generating synthetic environments. DBGen allows a user to orient,

scale, move, delete and add multi-resolution objects to synthetic

environments interactively. It also provides a fly-through

capability for immediate feedback on the dynamic response of the

database. The program uses the mouse and keyboard for inputs.

Keyboard response is as follows:

1) Effects object altitude:

Page Up - Adds 1000 units

Shift-Page Up - Adds 100 units

Up Arrow - Adds 10 units

Shift-Up Arrow - Adds 1 units

Page Down - Subtracts 1000 units

Shift-Page Down - Subtracts 100 units

Dn Arrow - Subtracts 10 units

Shift-Dn Arrow - Subtracts 1 units

2) Effects fly-through velocity

AKEY - Decreases velocity by 1 unit

SKEY - Increases velocity by 1 unit

3) Effects environment settings

GKEY - Toggles the display of grid lines

BKEY - Toggles multi-resolution blending

102

CKEY - Toggles coarse clipping in software

The mouse is used for the majority of interaction with the program.

Its effect is dependent on the active window and the mode of the

program. The active window is the window in which the mouse

pointer resides when the mouse button is depressed. The effects

break down generally as follows:

1) Middle Mouse Button - This effects the view volume of the

active window, zooming or panning based on the mode selected

in the button panel.

2) Right Mouse Button - Toggles states on or off, depending

on the window.

3) Left Mouse Button - Selects and performs actions on objects

in the tri-window. Acts as flight control stick in

fly-through mode.

OPTIONS

-h -?

Prints the synopsis from above.

-t terrainfile

Load the terrain information included in the *terrainfile"

LINK and PLACEMENT files (*.lnk \& *.dbs).

-m masterobjectfile

Load the LINK file specified with "masterobjectfile". This

includes the definitions of all available objects to be active

in the application (*.lnk).

-d placementfile

Load the PLACEMENT file specified with *placementfile". This

holds any predefined object placement information (*.dbs).

103

NOTE: All pathnames are specified without extensions.

FILES

terrainfile

specifies the geometry files, grid and placement information

for multi-resolution terrain.

masterobjectfile

specifies GEOM and TEMPLATE files defining each resolution

of each object available in the database.

placementfile

specifies the placement information for any objects placed

on the terrain specifed above.

BUGS

Any attempt to reload identically named geometry files within the

program does not correctly update the descriptions in memory. The

old descriptions remain.

104

Bibliography

1. Breden, W. 0. and J. J. Zanoli. Visualization of High-Resolution Digital Terrain. MS thesis,
NPS52-89-38, Naval Postgraduate School, Monterey, CA, June 1989.

2. Computer Systems and Technology Division, Electronic and Computer Systems Laboratory,
Georgia Tech Reasearch Institute. (Draft) Route Evealuation Module (REM), Software Users
Manual, August 1989.

3. Dahn, D. A. A Low-Cost part-Task Flight Training System: An Application of a Head
Mounted Display. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
1990.

4. DCS for Communications-Computer Systems, Directorate of Computers, Systems Support,
HQ TAC. Computer-Assisted Force Management System (CAFMS) (Ver. 6 Edition), Novem-
ber 1988.

5. Duckett, D. P. Application of Statistical Estimation Techniques to Terrain Modeling. MS
thesis, AFIT/GCE/ENG/91D-02, Air Force institute of Technology, Wright-Patterson AFB,
OH, 1991.

6. Filer, R. E. A 3-D Virtual Environment Display System. MS thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, 1989.

7. Foley, J., et al. Computer Graphics: Principles and Practice. Addison-Wesley Publishing
Company, 1990.

8. Gerken, M. An Event Driven State-Based Interface for Synthetic Environments. MS thesis,
AFIT/GCS/ENG/91D-07, Air Force Institute of Technology, Wright-Patterson AFB, OH,
1991.

9. Howard, T. L. J. "An Annotated PHIGS Bibliography." In Computer Graphics Forum, pages
262-265, December 1989.

10. Howard, T. L. J. "PHIGS and PHIGS PLUS Tutorial." In In Proceedings Eurographics, June
1990.

11. Kleiss, J. A. and others. Effect of Three-Dimensional Object Type and Density in Simulated
Low-Level Flight. Technical Report AFHRL-TR-88-66, Williams AFB, AZ: Operations
Training Division, Air Force Human Resources Laboratory, May 1989.

12. Lewis, H. V. and J. J. Fallesen, "Human Factors Guidelines for Command and Control
Systems: Battlefield and Decision Graphic Guidelines." Research Product 89-01, Systems
Research Laboratory, US Army Research Institute for the Behavioral and Social Sciences,
Alexandria, VA, March 1989.

13. McGhee, R. B. and others, "An Inexpensive Real-Time nteractive Three-Dimensional Right
Simulation System." Summary Report NPS 52-87-034. Naval Postgraduate School, August
1987,

14. Mikel, Russel D. 3-D Application Study. Technical Report RADC-TR-89-305, Griffis AFB,
NY: ITT Research Institute, November 1989.

105

15. Olson, R. Techniques to Enhance the Visual Realism of a Synthetic Environment Flight
Simulator. MS thesis, AFIT/GCSIENG/9ID-16, Air Force Institute of Technology, Wright-
Patterson AFB, OH, 1991.

16. Rome Air Development Center, Griffis AFB, NY. SCENARIO User VOperator's Manual,
June 1989.

17. Rumbaugh, J. and others. Object-Oriented Modeling and Design. Englewood Cliffs, NJ:
Prentice Hall, 1991.

18. Silicon Graphics Inc., Mountain View, CA. Silicon Graphics Iris Reference Manuals (C
edition Edition), 1991.

19. Simpson, D. J. An Application of the Object Oriented Paradigm to a Flight Simulator. MS
thesis, AFIT/GCS/ENG/91D-22, Air Force Institute of Technology, Wright-Patterson AFB,
OH, 1991.

20. Southard, D. A. Superworkstations for Terrain Visualization: A Prospectus. Technical
Report MTR 11080, Rome Laboratories, January 1991.

21. Wardin, C. L. Battle management Visualization System. MS thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, 1989.

22. Zyda, M. J. and others. "Flight Simulators for Under $100,000," Computer Graphics and
Applications, 8(1): 19-27 (January 1988).

106

REPRT OCU ENTATION PAGE jForm ApprovedREPOR DOC MIC0MB-No. 0/04-0 168
b.,d,qf C%, o'"Ct In..'-. (ntrm,.1-- I"rM a pq t a ver ';'-i~ p YAr, incutirq, the Tint, tor reviewin~ ncut'f%~a~i~t~~ a~a mOres,I.! . invfl 'mnq Tlthe i . -d oa- Oc, INreve'-.mg thft i' rr ,t .I _jfm Cn com ent- n-ga~rding ttIbre~etr~t r y.,thet ,qwrt ,f this

n~* toTng L I,"r S ' ' n5C t4?- r, 0!, ~ UT(s f ou to Wi %1,' -,;, ti c,,i.r?'.s Servi, -s. Directoate tor intormatiofl Opprinrs and Rtepori 151i jefe
,ito~ 1 .04A. ;t ./0 .'.. \'2-4fi /A J the .Otfi'of manw'."n-r , I. HiirPef Paperwofi fteduriKtn Project (0704-0 188).Washington, DC 20503.

r1.AGE4~(1Y USE ONLY (Leave' blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED
December 1991 Master's Thesis

r4. tffl t- AND) SUBTITLE 5. FUNDING NUMBERS
* DESIGN AND APPLICATION OF AN OBJECT ORIENTED

GRAPHICAL DATABASE MANAGEMENT SYSTEM
* FOR SYNTHETIC ENVIRONMENTS _________

John A. Brunderman, Captain, USAF

7. PLRFORNIING ORGANIZATION NAME(S, AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GA/ENG/91D-01

e SONSOCRINGIMVONITORING AGENCY NAME(5 AND ADDRESS(ES) 10. SPONSORING/ MONITORING

RL/COAA

Griffis AFB NY 13441-5700
DSY 587-7764

:i.:>7".MP'TARY NOTES

12a. DMSTRUIJTIOJ! AVAILABILITY STATEMENT 12b. DISTRIBUTION CODEI
Approved for public release; distribution unlimited

1_3. ABSTRACY (Maixitnumn200 words)
This investigation deals with the development and application of a software system to manage and render three-
dimensional synthetic environments for use in mission planning, battle management and low end flight simulation
systems. The work foicuses on the object-oriented design and implementation of the Graphical Database Man-
agejst System (GDMS). This system provides the data structures, Mie formats and algorithms to manage and
render hierarchical, three-dimensional, polygonal models. A DataBase Generation System (DEGen) was designed
and implemented using GDMS. DBGen allows a user to orient, scae, move, delete and add multi-resolution ob-
jects to synthetic environments interactively. It also provides a fly-through capability for immediate feedback on
the dynamic response of the database. The results indicate acceptable performance for GDMS, while DEGen
proved to be an effective tool for placing 3-D objects on terrain.

4. SUBJECT TERMS 15, NUMBER OF PAGES

Graphical Database, Synthetic Environment, Virtual World, Graphic Workstations, 107
Battle Management, Mission Planning, Flight Simula~tion, Object Oriented 16. PRICF CODE

11, SECURITY CLAS51FICATION 10, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20.LMTTO FASRC
OF RE~PORT or TIS PAGE OP ABSTRACT
Unclassified Unclassified Unclassified t7L

NS*N 754111J1 .7805500 S~tandard Form 298 (Rov 2189%

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Repo Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Seenon Technial
Jun 87 - 30 Jun 88). Statements on Technical

Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Ad;ressfesL Self-explanatory. Block 16. Price Code Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. SRegulations (i.e., UNCLASSIFIED). If form
_Names(s) and Addresskes). Self-explanatory. contains classified information, stamp

Block 10. Spo nsoring/Monitoring Agency. classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract, This blockBlock 11. S;uoplementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)

